PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1854.
Published online 2008 August 30. doi:  10.1107/S1600536808027220
PMCID: PMC2960569

4,4′,5,5′-Tetra­methyl-2,2′-[1,1′-(propane-1,3-diyldinitrilo)diethyl­idyne]diphenol

Abstract

The title Schiff base compound, C23H30N2O2, has crystallographic twofold rotation symmetry. An intra­molecular O—H(...)N hydrogen bond forms a six-membered ring, producing an S(6) ring motif. The imino group is coplanar with the benzene ring. The two benzene rings are almost perpendicular to each other, making a dihedral angle of 87.38 (4)°. In the crystal structure, neighbouring mol­ecules are linked along the c axis by weak inter­molecular C—H(...)O hydrogen bonds and are further packed into columns along the b axis, forming sheets which are parallel to the bc plane.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For information on Schiff base ligands and complexes and their applications, see, for example: Fun, Kargar & Kia (2008 [triangle]); Fun, Kia & Kargar (2008 [triangle]); Fun & Kia (2008a [triangle],b [triangle],c [triangle]); Calligaris & Randaccio (1987 [triangle]); Casellato & Vigato (1977 [triangle]); For a similar structure, see: Fun & Kia (2008a [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1854-scheme1.jpg

Experimental

Crystal data

  • C23H30N2O2
  • M r = 366.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1854-efi2.jpg
  • a = 28.6398 (12) Å
  • b = 5.1264 (2) Å
  • c = 13.3856 (5) Å
  • β = 102.090 (5)°
  • V = 1921.67 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100.0 (1) K
  • 0.52 × 0.18 × 0.04 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.959, T max = 0.997
  • 22388 measured reflections
  • 2955 independent reflections
  • 2125 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.163
  • S = 1.09
  • 2955 reflections
  • 134 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027220/at2621sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027220/at2621Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship. CSY thanks Universiti Sains Malaysia for the award of a student assistantship.

supplementary crystallographic information

Comment

The condensation of primary amines with carbonyl compounds yields Schiff base (Casellato & Vigato, 1977) that are still now regarded as one of the most potential group of chelators for facile preparations of metallo-organic hybrid materials. In the past two decades, the synthesis, structure and properties of Schiff base complexes have stimulated much interest for their noteworthy contributions in single molecule-based magnetism, materials science, catalysis of many reactions like carbonylation, hydroformylation, reduction, oxidation, epoxidation and hydrolysis (Casellato & Vigato, 1977). Only a relatively small number of free Schiff base ligands have been characterized (Calligaris & Randaccio, 1987). As an extension of our work (Fun, Kargar & Kia, 2008; Fun, Kia & Kargar, 2008; Fun & Kia, 2008a,b,c) on the structural characterization of Schiff base ligands and their complexes, the title compound (I), is reported here.

The molecule of the title compound, (I), has a crystallographic twofold rotation symmetry (Fig. 1). The bond lengths and angles are within normal ranges (Allen et al., 1987) and is comparable to its related structure (Fun & Kia 2008c). The asymmetric unit of the compound is composed of one-half of the molecule. An intramolecular O—H···N hydrogen bond forms a six-membered ring, producing a S(6) ring motif (Bernstein et al., 1995). The imino group is coplanar with the benzene ring. The two benzene rings are almost perpendicular to each other with a dihedral angle of 87.38 (4)°. In the crystal structure, neighbouring molecules are linked together along the c-axis by weak intermolecular C—H···O hydrogen bonds and are further packed into columns along the b axis, forming sheets which are parallel to the bc plane(Fig. 2, Fig. 3 and Table 1).

Experimental

The synthetic method has been described earlier (Fun & Kia et al., 2008c). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

H atom bound to O1 was located from the difference Fourier map and refined freely. The H atom bound to C9 was located from the difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H)= 1.2 Ueq(C). A rotating-group model was applied for the methyl groups.

Figures

Fig. 1.
The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms. The suffix A corresponds to symmetry code (-x + 1, y, -z + 3/2). Intramolecular interactions are shown as dashed lines.
Fig. 2.
The crystal packing of (I), viewed down the b-axis showing chains along the c-axis and stacking of these chains along the b-axis. Intramolecular and intermolecular interactions are shown as dashed lines.
Fig. 3.
The crystal packing of (I), viewed down the c-axis. Intermolecular interaction are shown as dashed lines.

Crystal data

C23H30N2O2F000 = 792
Mr = 366.49Dx = 1.263 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2732 reflections
a = 28.6398 (12) Åθ = 3.1–31.1º
b = 5.1264 (2) ŵ = 0.08 mm1
c = 13.3856 (5) ÅT = 100.0 (1) K
β = 102.090 (5)ºPlate, yellow
V = 1921.67 (13) Å30.52 × 0.18 × 0.04 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2955 independent reflections
Radiation source: fine-focus sealed tube2125 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.065
T = 100.0(1) Kθmax = 30.6º
[var phi] and ω scansθmin = 2.9º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −40→40
Tmin = 0.959, Tmax = 0.997k = −6→7
22388 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163  w = 1/[σ2(Fo2) + (0.0692P)2 + 1.4537P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2955 reflectionsΔρmax = 0.43 e Å3
134 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.39432 (4)0.1912 (2)0.79198 (8)0.0228 (3)
N10.44358 (4)0.3691 (2)0.67166 (9)0.0198 (3)
C10.37375 (5)0.0311 (3)0.71524 (10)0.0186 (3)
C20.33866 (5)−0.1421 (3)0.73211 (11)0.0202 (3)
H2A0.3305−0.14390.79580.024*
C30.31557 (5)−0.3111 (3)0.65766 (11)0.0196 (3)
C40.32783 (5)−0.3098 (3)0.56081 (11)0.0201 (3)
C50.36250 (5)−0.1379 (3)0.54410 (11)0.0195 (3)
H5A0.3705−0.13760.48030.023*
C60.38627 (5)0.0367 (3)0.61851 (10)0.0184 (3)
C70.42271 (5)0.2204 (3)0.59795 (11)0.0193 (3)
C80.48072 (5)0.5502 (3)0.65557 (11)0.0220 (3)
H8A0.46770.66540.59910.026*
H8B0.50670.45240.63730.026*
C90.50000.7123 (4)0.75000.0228 (4)
C100.27787 (5)−0.4945 (3)0.67857 (12)0.0248 (3)
H10A0.2721−0.46100.74550.037*
H10B0.2885−0.67120.67500.037*
H10C0.2489−0.46860.62850.037*
C110.30396 (6)−0.4918 (3)0.47727 (12)0.0261 (3)
H11A0.3177−0.46840.41830.039*
H11B0.2704−0.45420.45970.039*
H11C0.3086−0.66880.50060.039*
C120.43456 (6)0.2315 (4)0.49364 (12)0.0292 (4)
H12A0.46860.23250.50050.044*
H12B0.42130.38730.45920.044*
H12C0.42130.08180.45470.044*
H1O10.4165 (8)0.284 (5)0.7632 (17)0.052 (6)*
H90.5269 (6)0.827 (4)0.7343 (13)0.028 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0254 (6)0.0245 (6)0.0186 (5)−0.0057 (4)0.0047 (4)−0.0014 (4)
N10.0172 (6)0.0191 (6)0.0228 (6)0.0000 (5)0.0038 (5)0.0027 (5)
C10.0181 (6)0.0182 (7)0.0184 (6)0.0019 (5)0.0014 (5)0.0010 (5)
C20.0209 (7)0.0211 (7)0.0190 (7)0.0013 (6)0.0053 (5)0.0021 (6)
C30.0177 (6)0.0157 (7)0.0246 (7)0.0013 (5)0.0028 (5)0.0027 (6)
C40.0184 (6)0.0173 (7)0.0230 (7)0.0025 (5)0.0008 (5)−0.0001 (6)
C50.0208 (7)0.0197 (7)0.0177 (6)0.0036 (6)0.0031 (5)0.0005 (5)
C60.0171 (6)0.0193 (7)0.0185 (6)0.0011 (5)0.0034 (5)0.0022 (5)
C70.0184 (6)0.0195 (7)0.0199 (7)0.0016 (5)0.0035 (5)0.0031 (5)
C80.0200 (7)0.0212 (7)0.0249 (7)−0.0008 (6)0.0050 (6)0.0037 (6)
C90.0192 (10)0.0193 (11)0.0297 (11)0.0000.0045 (8)0.000
C100.0220 (7)0.0207 (8)0.0314 (8)−0.0012 (6)0.0050 (6)0.0022 (6)
C110.0266 (8)0.0222 (8)0.0271 (8)0.0004 (6)−0.0001 (6)−0.0037 (6)
C120.0312 (8)0.0347 (9)0.0232 (7)−0.0063 (7)0.0094 (6)−0.0001 (7)

Geometric parameters (Å, °)

O1—C11.3497 (17)C7—C121.505 (2)
O1—H1O10.94 (2)C8—C91.5169 (19)
N1—C71.2904 (19)C8—H8A0.9700
N1—C81.4613 (18)C8—H8B0.9700
C1—C21.395 (2)C9—C8i1.5169 (19)
C1—C61.4143 (19)C9—H91.025 (18)
C2—C31.380 (2)C10—H10A0.9600
C2—H2A0.9300C10—H10B0.9600
C3—C41.412 (2)C10—H10C0.9600
C3—C101.501 (2)C11—H11A0.9600
C4—C51.380 (2)C11—H11B0.9600
C4—C111.506 (2)C11—H11C0.9600
C5—C61.404 (2)C12—H12A0.9600
C5—H5A0.9300C12—H12B0.9600
C6—C71.474 (2)C12—H12C0.9600
C1—O1—H1O1102.7 (14)C9—C8—H8A109.2
C7—N1—C8119.85 (12)N1—C8—H8B109.2
O1—C1—C2118.58 (12)C9—C8—H8B109.2
O1—C1—C6122.04 (13)H8A—C8—H8B107.9
C2—C1—C6119.38 (13)C8—C9—C8i113.56 (18)
C3—C2—C1122.37 (13)C8—C9—H9107.5 (10)
C3—C2—H2A118.8C8i—C9—H9109.0 (10)
C1—C2—H2A118.8C3—C10—H10A109.5
C2—C3—C4119.08 (13)C3—C10—H10B109.5
C2—C3—C10120.86 (13)H10A—C10—H10B109.5
C4—C3—C10120.06 (13)C3—C10—H10C109.5
C5—C4—C3118.52 (13)H10A—C10—H10C109.5
C5—C4—C11120.34 (13)H10B—C10—H10C109.5
C3—C4—C11121.14 (13)C4—C11—H11A109.5
C4—C5—C6123.38 (13)C4—C11—H11B109.5
C4—C5—H5A118.3H11A—C11—H11B109.5
C6—C5—H5A118.3C4—C11—H11C109.5
C5—C6—C1117.27 (13)H11A—C11—H11C109.5
C5—C6—C7122.12 (12)H11B—C11—H11C109.5
C1—C6—C7120.61 (13)C7—C12—H12A109.5
N1—C7—C6117.88 (12)C7—C12—H12B109.5
N1—C7—C12121.89 (13)H12A—C12—H12B109.5
C6—C7—C12120.22 (13)C7—C12—H12C109.5
N1—C8—C9111.98 (11)H12A—C12—H12C109.5
N1—C8—H8A109.2H12B—C12—H12C109.5
O1—C1—C2—C3179.52 (13)O1—C1—C6—C5−179.81 (13)
C6—C1—C2—C30.3 (2)C2—C1—C6—C5−0.6 (2)
C1—C2—C3—C40.1 (2)O1—C1—C6—C7−0.1 (2)
C1—C2—C3—C10−179.85 (13)C2—C1—C6—C7179.09 (13)
C2—C3—C4—C5−0.2 (2)C8—N1—C7—C6178.61 (12)
C10—C3—C4—C5179.74 (13)C8—N1—C7—C12−1.6 (2)
C2—C3—C4—C11179.51 (13)C5—C6—C7—N1−178.28 (13)
C10—C3—C4—C11−0.5 (2)C1—C6—C7—N12.0 (2)
C3—C4—C5—C6−0.1 (2)C5—C6—C7—C121.9 (2)
C11—C4—C5—C6−179.86 (13)C1—C6—C7—C12−177.83 (14)
C4—C5—C6—C10.5 (2)C7—N1—C8—C9178.56 (13)
C4—C5—C6—C7−179.19 (13)N1—C8—C9—C8i56.33 (9)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.94 (3)1.63 (2)2.5237 (17)157 (2)
C12—H12C···O1ii0.962.573.466 (2)156

Symmetry codes: (ii) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2621).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.
  • Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev.23, 31–50.
  • Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308. [PMC free article] [PubMed]
  • Fun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, m1081–m1082. [PMC free article] [PubMed]
  • Fun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, m1116–m1117. [PMC free article] [PubMed]
  • Fun, H.-K. & Kia, R. (2008c). Acta Cryst. E64, o1657–o1658. [PMC free article] [PubMed]
  • Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography