PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1784.
Published online 2008 August 20. doi:  10.1107/S1600536808026196
PMCID: PMC2960566

(R)-3,4,5-Tride­oxy-5,6-didehydro-1,2-O-(2,2,2-trichloro­ethyl­idene)-α-d-gluco­furan­ose-6,3-carbolactone: a new derivative of α-chloralose

Abstract

The title compound [systematic name: (R)-2-trichloro­methyl-3a,3b,7a,8a-tetra­hydro-5H-pyrano[2′,3′:4,5]furano[2,3-d][1,3]dioxol-5-one], C9H7Cl3O5, a triyclic system that contains a central α-d-furan­ose ring cis-fused with a dioxolane ring as well as a δ-lactone ring, exhibits a twisted conformation. The CCl3 group has an axial orientation. The furan­ose ring approximates an envelope conformation due to the α,β-unsaturated lactone functionality. The asymmetric unit contains two independent mol­ecules with almost identical geometries.

Related literature

For background regarding α-chloralose and δ-lactones, see: Collins et al. (1983 [triangle]); Zosimo-Landolfo & Tronchet (1999 [triangle]); Wu et al. (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1784-scheme1.jpg

Experimental

Crystal data

  • C9H7Cl3O5
  • M r = 301.50
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1784-efi1.jpg
  • a = 9.129 (4) Å
  • b = 11.264 (4) Å
  • c = 23.156 (7) Å
  • V = 2381.1 (15) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.77 mm−1
  • T = 298 (1) K
  • 0.60 × 0.40 × 0.10 mm

Data collection

  • Siemens P4 diffractometer
  • Absorption correction: ψ scan (XSCANS; Siemens, 1996 [triangle]) T min = 0.803, T max = 0.926
  • 6901 measured reflections
  • 4735 independent reflections
  • 3838 reflections with I > 2σ(I)
  • R int = 0.044
  • 3 standard reflections every 97 reflections intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.111
  • S = 1.06
  • 4735 reflections
  • 307 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.35 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2010 Friedel pairs
  • Flack parameter: 0.04 (8)

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026196/pv2095sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026196/pv2095Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by SEP-PROMEP (Mexico) through grant PROMEP/103.5/06/0959.

supplementary crystallographic information

Comment

α-Chloralose [1,2-O-(2,2,2-trichloroethylidene)-α-D-glucofuranose, (1) in Scheme 2] is an easily available carbohydrate derivative, bearing well studied biological properties. It is a mild hypnotic drug, which is currently used as an anesthetic in veterinary medicine, as a rodenticide, etc. It has been characterized as a molecule possessing potent CNS activity, and has been evaluated in human and animal models, for its therapeutic properties (Collins et al., 1983). A number of α-chloralose derivatives have been prepared (e.g., Zosimo-Landolfo & Tronchet, 1999), since it is known that trichloroethylidene acetals are potential biologically active compounds.

On the other hand, δ-lactones are important flavor and aroma constituents found in many natural products. In some instances, δ-lactone derivatives have been shown to have anti-cancer and apoptosis inducing properties against various human tumors and animal cell lines (Wu et al., 1992).

We have synthesized a compound combining both functionalities, (I), with the hope that this compound will also cumulate properties corresponding to each functionality. The starting material was α-chloralose, (1, scheme 2), which was first oxidized into an aldehyde, (2), and then transformed to the corresponding acrylic acid (3) via a Wittig reaction affording a pure Z isomer. Cyclization furnished the lactone (I).

The asymmetric unit of (I) contains two molecules (Figs. 1 and 2), with almost identical geometry. A fit between two independent molecules (non-H atoms) gives a r.m.s. deviation of 0.103 Å. The tricyclic system includes a central α-D-furanose ring approximating an envelope conformation, with C7a as flap atom (C17a in the other molecule). This ring is cis-fused with a dioxolane ring, which may be considered as twisted on O3 and C8 (O13 and C18, resp.). The CCl3 substituent has an axial orientation, as in α-chloralose. Finally, the α,β-unsaturated δ-lactone ring is cis-fused with the furanose, and displays a rigid envelope conformation, with a total puckering amplitude of 0.347 (4) Å [0.361 (4) Å for the second molecule]. Molecules are well separated in the crystal, and no significant intermolecular contacts are detected.

Experimental

The synthesis of (I) is depicted in scheme 2. A solution of α-chloralose (5 g, 16.23 mmol) in ethanol (60 ml) was mixed with a solution of NaIO4 (3.47 g, 16.23 mmol) in H2O (6 ml). After stirring this solution at 298 K for 1 h., a white precipitate appeared, which was washed with ethanol. The filtrates were combined and concentrated under reduced pressure to give a solid product, (2). Ethyl-triphenylphosphoranylidene (6.64 g, 19.06 mmol) was added to a solution of (2), and stirred for 2 h. at 298 K. The mixture was then extracted with CH2Cl2, in order to eliminate oxide triphenylphosphine, acidified until pH 3, and extracted again with ethyl acetate. The organic phase was dried over Na2SO4 and concentrated, to give (3) as a very thick syrup. By adding N,N'-dicyclohexylcarbodiimide (DCC) to a dry-CH2Cl2 solution of (3), under Ar, the lactone (I) was formed over 2 h. The solution was filtered in order to eliminate urea, and the filtrate concentrated, to give (I) as a white solid (3.58 g, 11.93 mmol; 73% yield). NMR and mass spectra are in agreement with the X-ray structure (see archived CIF). Single crystals were obtained by evaporation of an AcOEt solution of (I), at 298 K.

Refinement

The absolute configuration was assigned after refining the Flack parameter (Flack, 1983), using 2010 measured Friedel pairs. All H atoms were placed in idealized positions, and refined as riding to their carrier atoms. C—H bond lengths were fixed to 0.93 (Csp2—H bonds) or 0.98 Å (methine CH groups), and isotropic displacement parameters calculated as Uiso(H) = 1.2Ueq(carrier C).

Figures

Fig. 1.
Structure of the first independent molecule. Displacement ellipsoids are shown at the 30% probability level.
Fig. 2.
Structure of the second independent molecule. Displacement ellipsoids are shown at the 30% probability level.
Fig. 3.
The synthesis of (I)

Crystal data

C9H7Cl3O5Dx = 1.682 Mg m3
Mr = 301.50Melting point = 416–418 K
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 78 reflections
a = 9.129 (4) Åθ = 4.6–12.4º
b = 11.264 (4) ŵ = 0.77 mm1
c = 23.156 (7) ÅT = 298 (1) K
V = 2381.1 (15) Å3Cell measurement pressure: 101(2) kPa
Z = 8Prism, colourless
F000 = 12160.60 × 0.40 × 0.10 mm

Data collection

Siemens P4 diffractometerRint = 0.044
Radiation source: fine-focus sealed tubeθmax = 26.2º
Monochromator: graphiteθmin = 1.8º
T = 298(1) Kh = −11→11
ω scansk = −14→14
Absorption correction: ψ scan(XSCANS; Siemens, 1996)l = −28→28
Tmin = 0.803, Tmax = 0.9263 standard reflections
6901 measured reflections every 97 reflections
4735 independent reflections intensity decay: 2%
3838 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044  w = 1/[σ2(Fo2) + (0.0319P)2 + 1.7306P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.34 e Å3
4735 reflectionsΔρmin = −0.35 e Å3
307 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2010 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.04 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.0538 (2)0.40323 (18)0.81819 (5)0.1242 (7)
Cl20.80275 (18)0.39332 (15)0.74470 (6)0.1046 (5)
Cl30.87777 (16)0.60974 (15)0.80223 (5)0.0921 (4)
O11.0741 (4)0.3469 (3)0.60422 (14)0.0810 (10)
C21.1264 (5)0.4432 (4)0.63415 (15)0.0612 (10)
H2A1.22770.46110.62320.073*
O21.1138 (3)0.4251 (3)0.69476 (11)0.0730 (9)
C31.0260 (4)0.5478 (3)0.62175 (13)0.0510 (8)
H3A1.07960.61650.60670.061*
O30.9574 (3)0.5723 (2)0.67532 (9)0.0533 (6)
C3A0.9171 (4)0.5005 (3)0.57924 (14)0.0486 (8)
H3AA0.81860.53170.58650.058*
O40.9700 (3)0.5335 (2)0.52305 (9)0.0540 (6)
C50.9475 (5)0.4644 (4)0.47699 (16)0.0626 (11)
O50.9798 (5)0.5044 (3)0.43064 (11)0.0863 (11)
C60.8919 (7)0.3451 (4)0.4862 (2)0.0852 (16)
H6A0.86210.30040.45460.102*
C70.8828 (7)0.2992 (4)0.5377 (2)0.0914 (18)
H7A0.84930.22180.54210.110*
C7A0.9250 (6)0.3685 (4)0.58927 (18)0.0684 (12)
H7AA0.86160.34690.62180.082*
C81.0435 (5)0.5219 (4)0.71861 (14)0.0561 (10)
H8A1.11580.57980.73230.067*
C90.9472 (5)0.4813 (4)0.76875 (16)0.0675 (12)
Cl110.48873 (14)0.45925 (9)0.55424 (4)0.0678 (3)
Cl120.32408 (13)0.58949 (15)0.47031 (5)0.0852 (4)
Cl130.63514 (12)0.59974 (13)0.46866 (4)0.0733 (3)
O110.3340 (3)0.6649 (2)0.68090 (10)0.0568 (7)
C120.3800 (5)0.7463 (3)0.63918 (14)0.0527 (9)
H12A0.33380.82390.64520.063*
O120.3488 (3)0.7016 (3)0.58318 (10)0.0583 (7)
C130.5434 (5)0.7557 (3)0.64229 (13)0.0503 (9)
H13A0.57790.83800.64430.060*
O130.5930 (3)0.6951 (2)0.59195 (10)0.0506 (6)
C13A0.5833 (4)0.6837 (3)0.69550 (14)0.0476 (8)
H13B0.67780.64330.69120.057*
O140.5842 (3)0.7680 (2)0.74220 (10)0.0552 (7)
C150.5407 (5)0.7344 (3)0.79577 (14)0.0547 (9)
O150.5549 (4)0.8058 (3)0.83396 (11)0.0814 (10)
C160.4746 (5)0.6189 (3)0.80334 (14)0.0598 (10)
H16A0.46260.58910.84050.072*
C170.4312 (5)0.5554 (3)0.75938 (15)0.0542 (9)
H17A0.38330.48360.76550.065*
C17A0.4586 (4)0.5981 (3)0.69935 (13)0.0460 (8)
H17B0.47500.53070.67340.055*
C180.4790 (4)0.7002 (3)0.55198 (14)0.0498 (8)
H18A0.48720.77240.52860.060*
C190.4815 (4)0.5908 (3)0.51320 (13)0.0500 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1478 (14)0.1669 (16)0.0579 (6)0.0583 (13)0.0186 (8)0.0493 (9)
Cl20.1170 (11)0.1059 (11)0.0909 (9)−0.0468 (9)0.0423 (8)−0.0014 (8)
Cl30.0981 (9)0.1150 (11)0.0632 (6)0.0175 (8)0.0090 (6)−0.0219 (7)
O10.119 (3)0.0595 (19)0.0646 (18)0.0256 (19)0.0019 (19)0.0040 (15)
C20.068 (2)0.074 (3)0.0413 (18)0.009 (2)0.0125 (18)0.0106 (19)
O20.082 (2)0.094 (2)0.0429 (13)0.0327 (18)0.0134 (13)0.0182 (15)
C30.059 (2)0.0539 (19)0.0401 (16)−0.0027 (19)0.0064 (16)0.0059 (15)
O30.0669 (16)0.0559 (14)0.0371 (11)0.0089 (13)0.0027 (11)0.0023 (10)
C3A0.060 (2)0.0480 (19)0.0382 (16)−0.0023 (17)0.0064 (16)0.0007 (15)
O40.0784 (17)0.0454 (13)0.0380 (11)−0.0015 (13)0.0041 (13)0.0050 (10)
C50.089 (3)0.055 (2)0.0439 (19)0.008 (2)0.010 (2)−0.0023 (17)
O50.141 (3)0.0767 (19)0.0410 (13)0.003 (2)0.0180 (18)0.0018 (13)
C60.137 (5)0.059 (3)0.060 (3)−0.015 (3)0.002 (3)−0.015 (2)
C70.153 (5)0.054 (3)0.067 (3)−0.021 (3)0.008 (3)−0.004 (2)
C7A0.106 (4)0.051 (2)0.048 (2)−0.016 (2)0.009 (2)0.0023 (18)
C80.056 (2)0.071 (3)0.0408 (17)0.005 (2)0.0053 (17)0.0085 (17)
C90.075 (3)0.082 (3)0.0449 (19)0.009 (2)0.0119 (19)0.0139 (19)
Cl110.0934 (8)0.0501 (5)0.0599 (5)−0.0081 (5)0.0111 (6)−0.0027 (4)
Cl120.0661 (6)0.1375 (12)0.0518 (5)0.0059 (7)−0.0119 (5)−0.0211 (7)
Cl130.0659 (6)0.1098 (9)0.0443 (5)−0.0028 (6)0.0161 (4)0.0017 (6)
O110.0608 (16)0.0652 (17)0.0443 (13)0.0013 (13)−0.0010 (12)0.0127 (12)
C120.077 (3)0.047 (2)0.0342 (16)0.0121 (19)−0.0010 (17)−0.0003 (15)
O120.0589 (16)0.080 (2)0.0364 (12)0.0177 (14)−0.0038 (11)−0.0060 (12)
C130.075 (3)0.0403 (17)0.0355 (15)−0.0042 (18)0.0029 (16)0.0013 (14)
O130.0557 (14)0.0606 (16)0.0356 (11)−0.0098 (12)0.0012 (10)−0.0033 (11)
C13A0.063 (2)0.0419 (18)0.0377 (16)0.0000 (16)−0.0030 (15)−0.0069 (15)
O140.0838 (18)0.0433 (13)0.0386 (11)−0.0123 (13)−0.0030 (12)−0.0040 (10)
C150.080 (3)0.0457 (18)0.0378 (16)−0.0019 (19)−0.0027 (18)−0.0038 (15)
O150.137 (3)0.0614 (17)0.0461 (14)−0.0131 (19)−0.0012 (17)−0.0150 (14)
C160.093 (3)0.050 (2)0.0359 (16)0.001 (2)−0.0011 (19)0.0065 (15)
C170.080 (3)0.0399 (18)0.0430 (17)−0.0034 (18)−0.0025 (18)0.0076 (15)
C17A0.065 (2)0.0376 (16)0.0356 (14)0.0000 (17)−0.0054 (15)−0.0001 (13)
C180.062 (2)0.0500 (19)0.0376 (15)0.0018 (17)0.0035 (17)0.0075 (15)
C190.053 (2)0.064 (2)0.0326 (14)−0.0013 (19)0.0015 (14)−0.0001 (15)

Geometric parameters (Å, °)

Cl1—C91.741 (4)Cl11—C191.761 (4)
Cl2—C91.741 (5)Cl12—C191.747 (4)
Cl3—C91.760 (5)Cl13—C191.744 (4)
O1—C21.373 (6)O11—C121.397 (4)
O1—C7A1.426 (6)O11—C17A1.429 (4)
C2—O21.423 (4)C12—O121.420 (4)
C2—C31.520 (6)C12—C131.497 (6)
C2—H2A0.9800C12—H12A0.9800
O2—C81.381 (5)O12—C181.390 (4)
C3—O31.417 (4)C13—O131.424 (4)
C3—C3A1.497 (5)C13—C13A1.520 (5)
C3—H3A0.9800C13—H13A0.9800
O3—C81.395 (4)O13—C181.394 (4)
C3A—O41.436 (4)C13A—O141.439 (4)
C3A—C7A1.507 (6)C13A—C17A1.495 (5)
C3A—H3AA0.9800C13A—H13B0.9800
O4—C51.337 (5)O14—C151.356 (4)
C5—O51.201 (5)C15—O151.202 (4)
C5—C61.452 (7)C15—C161.445 (5)
C6—C71.302 (6)C16—C171.306 (5)
C6—H6A0.9300C16—H16A0.9300
C7—C7A1.478 (6)C17—C17A1.492 (5)
C7—H7A0.9300C17—H17A0.9300
C7A—H7AA0.9800C17A—H17B0.9800
C8—C91.527 (5)C18—C191.526 (5)
C8—H8A0.9800C18—H18A0.9800
C2—O1—C7A108.6 (4)C12—O11—C17A108.3 (3)
O1—C2—O2110.9 (4)O11—C12—O12109.8 (3)
O1—C2—C3107.9 (3)O11—C12—C13108.2 (3)
O2—C2—C3104.4 (3)O12—C12—C13105.6 (3)
O1—C2—H2A111.1O11—C12—H12A111.0
O2—C2—H2A111.1O12—C12—H12A111.0
C3—C2—H2A111.1C13—C12—H12A111.0
C8—O2—C2108.6 (3)C18—O12—C12107.9 (3)
O3—C3—C3A110.6 (3)O13—C13—C12104.1 (3)
O3—C3—C2104.6 (3)O13—C13—C13A109.4 (3)
C3A—C3—C2104.4 (3)C12—C13—C13A103.9 (3)
O3—C3—H3A112.3O13—C13—H13A112.9
C3A—C3—H3A112.3C12—C13—H13A112.9
C2—C3—H3A112.3C13A—C13—H13A112.9
C8—O3—C3107.5 (3)C18—O13—C13106.6 (3)
O4—C3A—C3106.3 (3)O14—C13A—C17A112.7 (3)
O4—C3A—C7A112.3 (3)O14—C13A—C13105.0 (3)
C3—C3A—C7A102.6 (3)C17A—C13A—C13102.1 (3)
O4—C3A—H3AA111.7O14—C13A—H13B112.1
C3—C3A—H3AA111.7C17A—C13A—H13B112.1
C7A—C3A—H3AA111.7C13—C13A—H13B112.1
C5—O4—C3A121.4 (3)C15—O14—C13A120.1 (3)
O5—C5—O4117.2 (4)O15—C15—O14117.0 (3)
O5—C5—C6124.4 (4)O15—C15—C16123.9 (3)
O4—C5—C6118.4 (3)O14—C15—C16119.0 (3)
C7—C6—C5121.6 (4)C17—C16—C15121.7 (3)
C7—C6—H6A119.2C17—C16—H16A119.1
C5—C6—H6A119.2C15—C16—H16A119.1
C6—C7—C7A120.9 (4)C16—C17—C17A119.9 (3)
C6—C7—H7A119.5C16—C17—H17A120.0
C7A—C7—H7A119.5C17A—C17—H17A120.0
O1—C7A—C7110.8 (5)O11—C17A—C17108.4 (3)
O1—C7A—C3A104.6 (4)O11—C17A—C13A104.4 (3)
C7—C7A—C3A112.6 (4)C17—C17A—C13A113.0 (3)
O1—C7A—H7AA109.6O11—C17A—H17B110.3
C7—C7A—H7AA109.6C17—C17A—H17B110.3
C3A—C7A—H7AA109.6C13A—C17A—H17B110.3
O2—C8—O3107.2 (3)O12—C18—O13107.1 (2)
O2—C8—C9109.6 (3)O12—C18—C19109.1 (3)
O3—C8—C9110.1 (3)O13—C18—C19110.3 (3)
O2—C8—H8A110.0O12—C18—H18A110.1
O3—C8—H8A110.0O13—C18—H18A110.1
C9—C8—H8A110.0C19—C18—H18A110.1
C8—C9—Cl1109.3 (3)C18—C19—Cl13108.3 (3)
C8—C9—Cl2111.3 (3)C18—C19—Cl12109.2 (3)
Cl1—C9—Cl2110.3 (3)Cl13—C19—Cl12109.01 (16)
C8—C9—Cl3107.2 (3)C18—C19—Cl11111.3 (2)
Cl1—C9—Cl3109.1 (2)Cl13—C19—Cl11109.7 (2)
Cl2—C9—Cl3109.6 (3)Cl12—C19—Cl11109.3 (2)
C7A—O1—C2—O294.8 (4)C17A—O11—C12—O1299.0 (3)
C7A—O1—C2—C3−19.0 (4)C17A—O11—C12—C13−15.8 (4)
O1—C2—O2—C8−128.5 (4)O11—C12—O12—C18−124.3 (3)
C3—C2—O2—C8−12.5 (5)C13—C12—O12—C18−7.8 (4)
O1—C2—C3—O3113.3 (3)O11—C12—C13—O13107.1 (3)
O2—C2—C3—O3−4.7 (4)O12—C12—C13—O13−10.4 (4)
O1—C2—C3—C3A−2.9 (4)O11—C12—C13—C13A−7.4 (4)
O2—C2—C3—C3A−120.9 (3)O12—C12—C13—C13A−124.9 (3)
C3A—C3—O3—C8132.0 (3)C12—C13—O13—C1825.0 (4)
C2—C3—O3—C820.1 (4)C13A—C13—O13—C18135.5 (3)
O3—C3—C3A—O4151.9 (3)O13—C13—C13A—O14157.7 (3)
C2—C3—C3A—O4−96.1 (3)C12—C13—C13A—O14−91.6 (3)
O3—C3—C3A—C7A−90.1 (4)O13—C13—C13A—C17A−84.5 (3)
C2—C3—C3A—C7A21.9 (4)C12—C13—C13A—C17A26.1 (3)
C3—C3A—O4—C5147.0 (4)C17A—C13A—O14—C1535.4 (5)
C7A—C3A—O4—C535.6 (5)C13—C13A—O14—C15145.7 (3)
C3A—O4—C5—O5171.5 (4)C13A—O14—C15—O15174.2 (4)
C3A—O4—C5—C6−10.9 (6)C13A—O14—C15—C16−8.6 (6)
O5—C5—C6—C7167.8 (6)O15—C15—C16—C17164.2 (5)
O4—C5—C6—C7−9.5 (8)O14—C15—C16—C17−12.7 (7)
C5—C6—C7—C7A1.8 (10)C15—C16—C17—C17A4.1 (7)
C2—O1—C7A—C7154.9 (4)C12—O11—C17A—C17153.7 (3)
C2—O1—C7A—C3A33.4 (4)C12—O11—C17A—C13A33.0 (3)
C6—C7—C7A—O1−93.4 (7)C16—C17—C17A—O11−92.0 (5)
C6—C7—C7A—C3A23.4 (8)C16—C17—C17A—C13A23.2 (5)
O4—C3A—C7A—O180.2 (4)O14—C13A—C17A—O1176.1 (3)
C3—C3A—C7A—O1−33.5 (4)C13—C13A—C17A—O11−35.9 (3)
O4—C3A—C7A—C7−40.1 (6)O14—C13A—C17A—C17−41.4 (4)
C3—C3A—C7A—C7−153.8 (4)C13—C13A—C17A—C17−153.5 (3)
C2—O2—C8—O325.7 (4)C12—O12—C18—O1323.9 (4)
C2—O2—C8—C9145.1 (4)C12—O12—C18—C19143.2 (3)
C3—O3—C8—O2−28.8 (4)C13—O13—C18—O12−30.9 (3)
C3—O3—C8—C9−147.9 (3)C13—O13—C18—C19−149.5 (3)
O2—C8—C9—Cl155.3 (4)O12—C18—C19—Cl13173.3 (2)
O3—C8—C9—Cl1173.0 (3)O13—C18—C19—Cl13−69.4 (3)
O2—C8—C9—Cl2−66.7 (4)O12—C18—C19—Cl1254.7 (3)
O3—C8—C9—Cl251.0 (4)O13—C18—C19—Cl12172.1 (2)
O2—C8—C9—Cl3173.4 (3)O12—C18—C19—Cl11−66.0 (3)
O3—C8—C9—Cl3−68.9 (4)O13—C18—C19—Cl1151.3 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2095).

References

  • Collins, J. G., Kawahara, M., Homma, E. & Kitahata, L. M. (1983). Life Sci.32, 2995–2999. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wu, Y.-C., Chang, F.-R., Duh, C.-Y., Wang, S.-K. & Wu, T.-S. (1992). Phytochemistry, 31, 2851–2853.
  • Zosimo-Landolfo, G. & Tronchet, J. M. J. (1999). Il Farmaco, 54, 852–853.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography