PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1793.
Published online 2008 August 20. doi:  10.1107/S1600536808026111
PMCID: PMC2960562

N-(4-Chloro­benzyl­idene)-4-methoxy­aniline

Abstract

The title compound, C14H12ClNO, was prepared by the reaction of 4-methoxy­aniline and 4-chloro­benzaldehyde in ethanol at 367 K. The mol­ecule is almost planar, with a dihedral angle between the two benzene rings of 9.1 (2)° and an r.m.s. deviation from the mean plane through all non-H atoms in the mol­ecule of 0.167 Å.

Related literature

For applications of Schiff base compounds, see: Deschamps et al. (2003 [triangle]); Rozwadowski et al. (1999 [triangle]); Tarafder et al. (2000 [triangle]). For a related structure, see: Jian et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1793-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO
  • M r = 245.70
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1793-efi1.jpg
  • a = 6.1055 (9) Å
  • b = 7.3392 (11) Å
  • c = 27.469 (4) Å
  • V = 1230.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 293 (2) K
  • 0.20 × 0.15 × 0.11 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 7232 measured reflections
  • 2806 independent reflections
  • 2092 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.088
  • S = 1.01
  • 2806 reflections
  • 154 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1450 Friedel pairs
  • Flack parameter: −0.01 (7)

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026111/sj2527sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026111/sj2527Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Jian et al., 2006), and have antimicrobial (Tarafder et al., 2000) and anticancer applications (Deschamps et al., 2003). Additional recent interest in Schiff base compounds comes from their ability to form intramolecular hydrogen bonds by electron coupling between acid-base centers (Rozwadowski et al.,1999). We report here the synthesis and structure of the title Schiff base compound, I, Fig. 1.

The molecule is almost planar with a dihedral angle between the C2···C7 and C9···C13 benzene rings of 9.1 (2)° and an rms deviation from the meanplane through all non-hydrogen atoms in the molecule of 0.167. The C═N bond distance (1.255 (2) Å) is in reasonable agreement with that observed in a similar compound (Jian et al., 2006).

Experimental

A mixture of 4-methoxyaniline 2.46 g (0.02 mol) and 4-chlorobenzaldehyde 2.8 g (0.02 mol) was stirred in ethanol (50 mL) at 367 K for 2 h, to give the title compound (3.9 g, yield 81%). Single crystals suitable for X-ray measurements were obtained by recrystallization from acetone and ethanol(1:1) at room temperature.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq(C) for aromatic and 0.96Å, Uiso = 1.5Ueq(C) for CH3 atoms.

Figures

Fig. 1.
The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C14H12ClNOF000 = 512
Mr = 245.70Dx = 1.326 Mg m3
Orthorhombic, Pna21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2092 reflections
a = 6.1055 (9) Åθ = 2.9–28.3º
b = 7.3392 (11) ŵ = 0.29 mm1
c = 27.469 (4) ÅT = 293 (2) K
V = 1230.9 (3) Å3Block, yellow
Z = 40.20 × 0.15 × 0.11 mm

Data collection

Bruker SMART CCD area-detector diffractometer2092 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Monochromator: graphiteθmax = 28.3º
T = 293(2) Kθmin = 2.9º
[var phi] and ω scansh = −8→4
Absorption correction: nonek = −9→9
7232 measured reflectionsl = −36→33
2806 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035  w = 1/[σ2(Fo2) + (0.04P)2 + 0.0836P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.14 e Å3
2806 reflectionsΔρmin = −0.16 e Å3
154 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 1450 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.01 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.77772 (12)0.00540 (10)0.23599 (3)0.0862 (2)
O1−0.0611 (2)−0.01368 (19)0.64134 (5)0.0560 (4)
N10.2457 (3)0.0122 (2)0.45058 (6)0.0463 (4)
C1−0.2589 (4)0.0731 (4)0.65469 (10)0.0750 (7)
H1B−0.28590.05390.68870.112*
H1C−0.37750.02300.63610.112*
H1D−0.24750.20140.64830.112*
C20.0048 (3)−0.0027 (2)0.59389 (7)0.0421 (4)
C30.1994 (3)−0.0915 (2)0.58341 (7)0.0446 (4)
H3A0.2739−0.15220.60810.053*
C40.2838 (3)−0.0909 (3)0.53699 (7)0.0456 (4)
H4A0.4144−0.15130.53050.055*
C50.1737 (3)0.0005 (2)0.49944 (7)0.0395 (4)
C6−0.0225 (3)0.0856 (3)0.51062 (6)0.0436 (4)
H6A−0.09960.14420.48600.052*
C7−0.1074 (3)0.0862 (2)0.55747 (7)0.0451 (4)
H7A−0.23840.14580.56420.054*
C80.4424 (3)−0.0157 (2)0.43961 (7)0.0475 (5)
H8A0.5407−0.04390.46440.057*
C90.5235 (3)−0.0060 (2)0.38958 (8)0.0456 (4)
C100.3951 (4)0.0631 (3)0.35228 (7)0.0537 (5)
H10A0.25590.10750.35920.064*
C110.4712 (4)0.0666 (3)0.30525 (8)0.0595 (6)
H11A0.38420.11330.28040.071*
C120.6790 (4)0.0000 (3)0.29508 (8)0.0572 (6)
C130.8091 (3)−0.0666 (3)0.33165 (8)0.0579 (5)
H13A0.9480−0.11150.32470.069*
C140.7321 (3)−0.0665 (3)0.37880 (7)0.0534 (5)
H14A0.8221−0.10790.40380.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0943 (5)0.1126 (5)0.0517 (3)−0.0069 (4)0.0194 (4)−0.0127 (3)
O10.0570 (9)0.0702 (10)0.0409 (7)0.0069 (7)0.0025 (7)−0.0003 (6)
N10.0453 (10)0.0487 (10)0.0448 (10)0.0027 (7)−0.0005 (7)−0.0006 (7)
C10.0614 (15)0.104 (2)0.0598 (14)0.0089 (13)0.0097 (11)−0.0055 (13)
C20.0414 (9)0.0408 (9)0.0440 (10)−0.0062 (7)−0.0034 (9)−0.0031 (8)
C30.0429 (9)0.0450 (10)0.0459 (11)0.0016 (8)−0.0062 (8)0.0036 (8)
C40.0396 (10)0.0457 (10)0.0516 (11)0.0073 (8)−0.0017 (8)0.0024 (8)
C50.0408 (10)0.0361 (9)0.0417 (9)−0.0022 (7)−0.0009 (7)−0.0013 (7)
C60.0409 (10)0.0411 (10)0.0487 (11)0.0043 (8)−0.0080 (8)0.0020 (8)
C70.0397 (10)0.0444 (9)0.0511 (11)0.0048 (8)−0.0023 (8)−0.0014 (8)
C80.0453 (11)0.0527 (11)0.0446 (10)−0.0005 (9)−0.0036 (9)−0.0018 (9)
C90.0435 (10)0.0449 (10)0.0484 (10)−0.0041 (8)−0.0011 (9)−0.0025 (8)
C100.0479 (11)0.0593 (12)0.0540 (12)0.0032 (10)0.0019 (9)−0.0013 (9)
C110.0598 (14)0.0688 (14)0.0498 (12)0.0060 (11)−0.0051 (10)0.0013 (9)
C120.0660 (14)0.0581 (13)0.0476 (12)−0.0085 (11)0.0123 (10)−0.0092 (10)
C130.0473 (12)0.0646 (13)0.0617 (14)0.0032 (10)0.0059 (10)−0.0055 (11)
C140.0473 (12)0.0620 (13)0.0508 (12)0.0043 (9)−0.0002 (9)0.0018 (9)

Geometric parameters (Å, °)

Cl1—C121.732 (2)C6—C71.387 (2)
O1—C21.366 (2)C6—H6A0.9300
O1—C11.414 (3)C7—H7A0.9300
N1—C81.255 (2)C8—C91.463 (3)
N1—C51.415 (3)C8—H8A0.9300
C1—H1B0.9600C9—C141.381 (3)
C1—H1C0.9600C9—C101.386 (3)
C1—H1D0.9600C10—C111.373 (3)
C2—C71.377 (3)C10—H10A0.9300
C2—C31.386 (2)C11—C121.388 (3)
C3—C41.375 (2)C11—H11A0.9300
C3—H3A0.9300C12—C131.371 (3)
C4—C51.402 (3)C13—C141.378 (3)
C4—H4A0.9300C13—H13A0.9300
C5—C61.386 (3)C14—H14A0.9300
C2—O1—C1118.19 (17)C2—C7—H7A120.4
C8—N1—C5121.00 (17)C6—C7—H7A120.4
O1—C1—H1B109.5N1—C8—C9122.78 (18)
O1—C1—H1C109.5N1—C8—H8A118.6
H1B—C1—H1C109.5C9—C8—H8A118.6
O1—C1—H1D109.5C14—C9—C10118.7 (2)
H1B—C1—H1D109.5C14—C9—C8119.87 (19)
H1C—C1—H1D109.5C10—C9—C8121.40 (17)
O1—C2—C7125.07 (16)C11—C10—C9120.7 (2)
O1—C2—C3115.02 (17)C11—C10—H10A119.6
C7—C2—C3119.91 (18)C9—C10—H10A119.6
C4—C3—C2120.82 (17)C10—C11—C12119.5 (2)
C4—C3—H3A119.6C10—C11—H11A120.3
C2—C3—H3A119.6C12—C11—H11A120.3
C3—C4—C5120.27 (17)C13—C12—C11120.5 (2)
C3—C4—H4A119.9C13—C12—Cl1119.55 (17)
C5—C4—H4A119.9C11—C12—Cl1119.92 (19)
C6—C5—C4117.86 (18)C12—C13—C14119.42 (18)
C6—C5—N1116.83 (16)C12—C13—H13A120.3
C4—C5—N1125.31 (16)C14—C13—H13A120.3
C5—C6—C7122.00 (17)C13—C14—C9121.1 (2)
C5—C6—H6A119.0C13—C14—H14A119.5
C7—C6—H6A119.0C9—C14—H14A119.5
C2—C7—C6119.11 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2527).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem., 42, 7366–7368. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198–o3199.
  • Rozwadowski, Z., Majewski, E., Dziembowska, T. & Hansen, P. E. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2809–2817.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem.25, 456–460.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography