PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1843.
Published online 2008 August 30. doi:  10.1107/S1600536808027311
PMCID: PMC2960561

5-Methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid

Abstract

The title compound, C10H9N3O2, was synthesized from azido­benzene and ethyl acetyl­acetate. A pair of hydrogen bonds [2.617 (2) Å] inter­connects a pair of the carboxyl groups, forming an R 2 2(8) inversion dimer, a frequent motif in carboxylic acids. In the title structure, the bonding H atom in the aforementioned O—H(...)O hydrogen bond is significantly shifted towards the acceptor O atom [the donor and acceptor O—H distances are 1.25 (4) and 1.38 (4) Å, respectively]. A plot of the O(...)O versus O—H distances in compounds with paired carboxyl groups shows that the title structure belongs to the group of structures with abnormally long O—H distances with regard to the O(...)O contacts. The displacement of the bonding H atom towards the centre of the hydrogen bond is concomitant with more equal C—O bonding distances in the carboxyl group.

Related literature

For related literature, see: El Khadem et al. (1968 [triangle]); Olesen et al. (2003 [triangle]); Tian et al. (2005 [triangle]); Allen (2002 [triangle]); Etter et al. (1990 [triangle]); Radl et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1843-scheme1.jpg

Experimental

Crystal data

  • C10H9N3O2
  • M r = 203.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1843-efi1.jpg
  • a = 23.616 (3) Å
  • b = 7.7189 (15) Å
  • c = 12.606 (2) Å
  • β = 113.18 (3)°
  • V = 2112.5 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 (2) K
  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.965, T max = 0.977
  • 10370 measured reflections
  • 2400 independent reflections
  • 1583 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.148
  • S = 1.08
  • 2400 reflections
  • 141 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027311/fb2106sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027311/fb2106Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University to HZ.

supplementary crystallographic information

Comment

Many triazole-related molecules have received much attention because of their biological activities (Olesen et al., 2003; Tian et al., 2005). We report herein the crystal structure of the title compound (Fig. 1).

The molecules are arranged into inversion dimers via carboxyl groups that are interconnected by pairs of the O-H···O hydrogen bonds (Fig. 2). The graph-set motif is R22(8) (Etter et al., 1990). The peculiarity of the title structure consists in the displacement of the bonding hydrogen towards the centre of the hydrogen bond (Tab. 1). Though not unprecedented, Fig. 3 shows that the title structure belongs among rather rare examples where in a relatively long O···O hydrogen bond the involved hydrogen is shifted towards the centre. The displacement of the bonding hydrogen towards the centre of the hydrogen bond is concomitant to more equal C-O bonding distances in the carboxyl group.

The dihedral angle between the triazole and phenyl ring planes is 41.85 (1)°.

Experimental

The title compound was prepared from azidobenzene according to the reported method (El Khadem et al., 1968). The colourless prisms (average size: 0.5×0.8×1.0 mm) were obtained by slow evaporation from 95% ethanol/water solution at room temperature.

Refinement

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the H atoms attached to the carbon atoms were constrained in a riding motion approximation. Caryl—H=0.93 Å, with Uiso(H)=1.2Ueq(C). Cmethyl—H=0.96 Å, with Uiso(H)=1.5Ueq(C). The hydroxyl hydrogen was refined freely.

Figures

Fig. 1.
The title molecule, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram of the title molecules, showing the structure along the b axis.
Fig. 3.
The O-H vs. O···O distances (Å) for the structural motif of the pairs of the carboxyl groups that are interconnected by the hydrogen bonds. The structures were found in the Cambridge Structural Database (Allen, 2002; CSD ...

Crystal data

C10H9N3O2F000 = 848
Mr = 203.20Dx = 1.278 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2025 reflections
a = 23.616 (3) Åθ = 2.8–27.5º
b = 7.7189 (15) ŵ = 0.09 mm1
c = 12.606 (2) ÅT = 293 (2) K
β = 113.18 (3)ºPrism, colourless
V = 2112.5 (8) Å30.20 × 0.18 × 0.15 mm
Z = 8

Data collection

Rigaku SCXmini diffractometer2400 independent reflections
Radiation source: fine-focus sealed tube1583 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.053
T = 293(2) Kθmax = 27.5º
ω scansθmin = 2.8º
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)h = −30→30
Tmin = 0.965, Tmax = 0.977k = −9→10
10370 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148  w = 1/[σ2(Fo2) + (0.0614P)2 + 0.4952P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2400 reflectionsΔρmax = 0.14 e Å3
141 parametersΔρmin = −0.18 e Å3
31 constraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.41473 (10)0.1278 (3)0.72134 (18)0.0555 (5)
C20.34886 (9)0.1172 (3)0.69727 (16)0.0491 (5)
C30.31868 (9)0.1493 (2)0.76949 (15)0.0461 (5)
C40.20319 (9)0.1379 (2)0.72119 (16)0.0466 (5)
C50.20037 (10)0.0713 (3)0.82132 (17)0.0538 (5)
H50.23500.02180.87800.065*
C60.14517 (11)0.0799 (3)0.8352 (2)0.0655 (6)
H60.14260.03640.90200.079*
C70.09414 (11)0.1525 (3)0.7506 (2)0.0761 (7)
H70.05710.15740.76030.091*
C80.09745 (10)0.2184 (3)0.6509 (2)0.0734 (7)
H80.06260.26660.59400.088*
C90.15210 (9)0.2129 (3)0.63569 (18)0.0578 (5)
H90.15470.25850.56950.069*
C100.34155 (10)0.2068 (3)0.89199 (16)0.0579 (6)
H10A0.30990.27160.90410.087*
H10B0.37730.27860.90910.087*
H10C0.35220.10730.94170.087*
N10.30730 (8)0.0743 (2)0.58988 (14)0.0577 (5)
N20.25230 (8)0.0763 (2)0.59058 (13)0.0571 (5)
N30.25867 (7)0.1228 (2)0.70044 (13)0.0475 (4)
O10.45271 (7)0.1465 (2)0.82345 (13)0.0733 (5)
O20.43008 (7)0.1161 (3)0.63484 (13)0.0799 (6)
H20.4867 (19)0.125 (5)0.661 (3)0.193 (17)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0557 (12)0.0670 (14)0.0444 (12)0.0033 (10)0.0201 (10)0.0024 (10)
C20.0508 (11)0.0572 (12)0.0404 (11)0.0029 (9)0.0190 (9)0.0016 (8)
C30.0505 (11)0.0472 (11)0.0407 (10)0.0013 (8)0.0182 (9)0.0020 (8)
C40.0488 (10)0.0506 (11)0.0416 (11)−0.0023 (9)0.0190 (9)−0.0050 (8)
C50.0562 (12)0.0617 (13)0.0443 (11)−0.0008 (9)0.0206 (10)−0.0031 (9)
C60.0660 (14)0.0826 (16)0.0573 (14)−0.0081 (12)0.0343 (12)−0.0071 (11)
C70.0548 (14)0.102 (2)0.0797 (17)−0.0006 (13)0.0350 (14)−0.0096 (15)
C80.0528 (13)0.0884 (18)0.0717 (16)0.0117 (12)0.0165 (12)0.0013 (13)
C90.0566 (13)0.0654 (14)0.0481 (12)0.0046 (10)0.0169 (10)0.0026 (10)
C100.0580 (12)0.0714 (15)0.0429 (11)−0.0024 (10)0.0184 (10)−0.0071 (10)
N10.0544 (10)0.0770 (12)0.0430 (10)0.0019 (9)0.0208 (8)−0.0018 (8)
N20.0567 (11)0.0774 (13)0.0381 (9)−0.0015 (8)0.0196 (8)−0.0064 (8)
N30.0505 (9)0.0554 (10)0.0372 (8)0.0005 (7)0.0178 (7)−0.0002 (7)
O10.0532 (9)0.1133 (14)0.0506 (9)−0.0020 (8)0.0176 (8)−0.0084 (8)
O20.0585 (10)0.1372 (16)0.0504 (9)0.0041 (9)0.0282 (8)0.0032 (9)

Geometric parameters (Å, °)

C1—O11.254 (2)C6—H60.9300
C1—O21.281 (2)C7—C81.386 (3)
C1—C21.465 (3)C7—H70.9300
C2—N11.364 (3)C8—C91.378 (3)
C2—C31.382 (3)C8—H80.9300
C3—N31.356 (2)C9—H90.9300
C3—C101.489 (3)C10—H10A0.9600
C4—C51.389 (3)C10—H10B0.9600
C4—C91.389 (3)C10—H10C0.9600
C4—N31.438 (2)N1—N21.302 (2)
C5—C61.384 (3)N2—N31.380 (2)
C5—H50.9300O2—H21.25 (4)
C6—C71.376 (3)
O1—C1—O2123.66 (19)C8—C7—H7119.7
O1—C1—C2119.41 (19)C9—C8—C7120.3 (2)
O2—C1—C2116.94 (19)C9—C8—H8119.8
N1—C2—C3109.96 (17)C7—C8—H8119.8
N1—C2—C1120.64 (17)C8—C9—C4118.7 (2)
C3—C2—C1129.38 (19)C8—C9—H9120.7
N3—C3—C2103.29 (16)C4—C9—H9120.7
N3—C3—C10124.88 (17)C3—C10—H10A109.5
C2—C3—C10131.79 (18)C3—C10—H10B109.5
C5—C4—C9121.47 (19)H10A—C10—H10B109.5
C5—C4—N3120.56 (18)C3—C10—H10C109.5
C9—C4—N3117.90 (17)H10A—C10—H10C109.5
C6—C5—C4118.8 (2)H10B—C10—H10C109.5
C6—C5—H5120.6N2—N1—C2108.68 (15)
C4—C5—H5120.6N1—N2—N3107.15 (15)
C7—C6—C5120.2 (2)C3—N3—N2110.92 (15)
C7—C6—H6119.9C3—N3—C4131.92 (16)
C5—C6—H6119.9N2—N3—C4117.15 (15)
C6—C7—C8120.5 (2)C1—O2—H2113.8 (15)
C6—C7—H7119.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O1i1.25 (4)1.38 (4)2.617 (2)173 (3)

Symmetry codes: (i) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2106).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • El Khadem, H., Mansour, H. A. R. & Meshreki, M. H. (1968). J. Chem. Soc. C, pp. 1329–1331.
  • Etter, M. C., MacDonald, J. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Olesen, P. H., Sorensen, A. R., Urso, B., Kurtzhals, P., Bowler, A. N., Ehrbar, U. & Hansen, B. F. (2003). J. Med. Chem.46, 3333–3341. [PubMed]
  • Radl, S., Hezky, P., Konvicka, P. & Krejci, J. (2000). Collect. Czech. Chem. Commun.65, 1093–1108.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem.99, 1646–1652. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography