PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1177.
Published online 2008 August 16. doi:  10.1107/S1600536808025890
PMCID: PMC2960554

(μ-Piperazine-1,4-dicarbodithioato-κ4 S,S′:S′′,S′′′)bis­[triphenyl­tin(IV)] dichloro­methane solvate

Abstract

The dinuclear centrosymmetric title compound, [Sn2(C6H5)6(C6H8N2S4)]·CH2Cl2, features a distorted cis-trigonal–bipyramidal coordination geometry for Sn based on a C3S2 donor set. The dinuclear mol­ecule lies across a centre of inversion. The solvent dichloro­methane mol­ecule is disordered about a centre of inversion.

Related literature

For a review of tin dithio­carbamates, see: Tiekink (2008 [triangle]). For a related structure, see: Yin et al. (2002 [triangle]). For analysis of trigonal–bipyramidal geometries, see: Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1177-scheme1.jpg

Experimental

Crystal data

  • [Sn2(C6H5)6(C6H8N2S4)]·CH2Cl2
  • M r = 1021.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1177-efi1.jpg
  • a = 14.681 (5) Å
  • b = 10.758 (3) Å
  • c = 13.470 (4) Å
  • β = 90.379 (6)°
  • V = 2127.3 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.53 mm−1
  • T = 98 (2) K
  • 0.35 × 0.15 × 0.01 mm

Data collection

  • Rigaku AFC12κ/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.354, T max = 1 (expected range = 0.346–0.977)
  • 14400 measured reflections
  • 4389 independent reflections
  • 4021 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.113
  • S = 1.10
  • 4389 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.77 e Å−3
  • Δρmin = −1.12 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025890/ng2481sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025890/ng2481Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Tin dithiocarbamates continue to attract interest owing to their variety of applications (Tiekink, 2008). The title compound, Ph3SnS2CN(CH2CH2)2NCS2SnPh3, has been reported previously as a methanol solvate (Yin et al., 2002). The present structure (I) has been isolated as a dichloromethane solvate, Fig. 1. The molecule is centrosymmetric so that the Ph3Sn entities lie to either side of the pyrrolidine ring which adopts a chair conformation. The dithiocarbamate ligand coordinates in an asymmetric mode, forming Sn—S1 and Sn—S2 distances of 2.4699 (13) and 3.0715 (13) Å, respectively. The coordination geometry is based on a distorted trigonal bipyramid as indicated by the value of τ = 0.64 (Addison et al., 1984).

Experimental

The title compound was prepared by following a literature procedure (Yin et al., 2002). Colourless crystals were isolated by the slow evaporation of a dichloromethane solution of (I); m.p. 487–489 K (crystal turned opaque at 363–368 K). TGA: two steps, First mass loss 7.2% (onset 388.3 K, midpoint 392.6 K, endset 396.9 K) corresponds to loss CH2Cl2 (8.2% theoretical). Second mass loss 69.3% (onset 558.5 K, midpoint 620 K, endset 680 K), corresponds to decomposition to SnS (total experimental mass loss 76.5% cf. theoretical value 70.5%). IR (cm-1): 1427, 1416 (strong, C═N), 1214 (strong, C—S).

Refinement

The H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The solvent dichloromethane molecule was disordered about a centre of inversion and was modelled with anisotropic displacement parameters.

Figures

Fig. 1.
Molecular structure of (I) showing the crystallographic numbering scheme. Displacement ellipsoids are shown at the 70% probability level. Unlabelled atoms are related by the symmetry operation i: -x, 1-y, 1-z. The disordered dichloromethane molecule is ...

Crystal data

[Sn2(C6H5)6(C6H8N2S4)]·CH2Cl2F000 = 1020
Mr = 1021.37Dx = 1.594 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 13756 reflections
a = 14.681 (5) Åθ = 2.4–40.7º
b = 10.758 (3) ŵ = 1.53 mm1
c = 13.470 (4) ÅT = 98 (2) K
β = 90.379 (6)ºPlate, colourless
V = 2127.3 (11) Å30.35 × 0.15 × 0.02 mm
Z = 2

Data collection

Rigaku AFC12κ/SATURN724 diffractometer4389 independent reflections
Radiation source: fine-focus sealed tube4021 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.048
T = 98(2) Kθmax = 26.5º
ω scansθmin = 2.4º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −17→18
Tmin = 0.354, Tmax = 1k = −13→13
14400 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.04P)2 + 8.4194P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
4389 reflectionsΔρmax = 0.77 e Å3
244 parametersΔρmin = −1.12 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Sn0.23132 (2)0.37950 (3)0.17164 (2)0.02056 (11)
S10.10733 (8)0.32408 (10)0.28651 (9)0.0237 (3)
S20.12861 (8)0.59723 (11)0.26696 (9)0.0244 (3)
N10.0190 (3)0.4872 (4)0.3970 (3)0.0250 (9)
C10.0795 (3)0.4757 (4)0.3239 (3)0.0228 (9)
C2−0.0077 (3)0.6087 (4)0.4381 (4)0.0264 (11)
H2A−0.07450.61930.43200.032*
H2B0.02200.67610.40020.032*
C30.0208 (3)0.6161 (4)0.5471 (4)0.0260 (10)
H3A0.08800.61280.55250.031*
H3B0.00010.69610.57560.031*
C40.2559 (3)0.1881 (4)0.1326 (3)0.0212 (9)
C50.2678 (3)0.1546 (5)0.0335 (4)0.0238 (10)
H50.26900.2174−0.01600.029*
C60.2780 (3)0.0316 (5)0.0060 (4)0.0284 (11)
H60.28460.0103−0.06200.034*
C70.2785 (3)−0.0610 (4)0.0782 (4)0.0284 (11)
H70.2869−0.14530.05960.034*
C80.2666 (4)−0.0303 (5)0.1768 (4)0.0320 (12)
H80.2664−0.09360.22590.038*
C90.2549 (3)0.0934 (4)0.2042 (4)0.0270 (10)
H90.24620.11390.27210.032*
C100.1869 (3)0.4710 (4)0.0402 (3)0.0231 (10)
C110.2262 (4)0.5821 (5)0.0088 (4)0.0413 (14)
H110.27670.61570.04420.050*
C120.1920 (4)0.6440 (5)−0.0742 (5)0.0424 (15)
H120.21840.7205−0.09440.051*
C130.1199 (4)0.5948 (4)−0.1273 (4)0.0272 (10)
H130.09660.6377−0.18360.033*
C140.0818 (4)0.4841 (5)−0.0989 (4)0.0344 (12)
H140.03240.4497−0.13560.041*
C150.1166 (4)0.4223 (5)−0.0151 (4)0.0307 (11)
H150.09080.34490.00380.037*
C160.3474 (3)0.4550 (4)0.2475 (4)0.0238 (10)
C170.4094 (3)0.3737 (5)0.2921 (4)0.0297 (11)
H170.40110.28650.28600.036*
C180.4830 (4)0.4199 (5)0.3453 (4)0.0369 (12)
H180.52470.36400.37590.044*
C190.4966 (4)0.5477 (5)0.3543 (4)0.0378 (13)
H190.54750.57910.39040.045*
C200.4352 (3)0.6280 (5)0.3103 (4)0.0308 (11)
H200.44390.71510.31650.037*
C210.3608 (3)0.5833 (4)0.2570 (4)0.0247 (10)
H210.31910.63970.22700.030*
C220.5409 (12)0.0134 (14)0.5721 (11)0.066 (4)0.50
H22A0.60460.04340.57640.080*0.50
H22B0.51720.00060.64000.080*0.50
Cl10.4667 (2)0.1259 (2)0.4994 (2)0.0958 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn0.02652 (19)0.01628 (17)0.01887 (18)−0.00089 (12)−0.00114 (13)0.00000 (11)
S10.0281 (6)0.0167 (5)0.0263 (6)−0.0002 (4)0.0029 (5)−0.0026 (4)
S20.0294 (6)0.0191 (5)0.0247 (6)0.0000 (5)0.0020 (5)−0.0025 (4)
N10.027 (2)0.0180 (19)0.030 (2)0.0038 (16)0.0035 (17)0.0006 (16)
C10.024 (2)0.023 (2)0.021 (2)0.0046 (18)−0.0024 (18)−0.0055 (18)
C20.025 (2)0.019 (2)0.035 (3)0.0045 (18)0.010 (2)−0.0009 (19)
C30.024 (2)0.018 (2)0.036 (3)0.0017 (18)0.007 (2)−0.001 (2)
C40.026 (2)0.015 (2)0.023 (2)0.0014 (17)0.0030 (18)−0.0032 (17)
C50.024 (2)0.027 (2)0.021 (2)0.0037 (19)0.0010 (18)−0.0005 (19)
C60.032 (3)0.030 (3)0.023 (3)0.001 (2)−0.001 (2)−0.008 (2)
C70.029 (3)0.018 (2)0.038 (3)−0.0012 (19)−0.002 (2)−0.007 (2)
C80.043 (3)0.021 (2)0.032 (3)0.001 (2)0.007 (2)0.006 (2)
C90.035 (3)0.024 (2)0.022 (2)0.001 (2)0.003 (2)0.0007 (19)
C100.032 (2)0.018 (2)0.019 (2)0.0025 (18)0.0003 (19)−0.0009 (17)
C110.057 (4)0.033 (3)0.034 (3)−0.019 (3)−0.024 (3)0.012 (2)
C120.060 (4)0.029 (3)0.039 (3)−0.014 (3)−0.013 (3)0.013 (2)
C130.041 (3)0.022 (2)0.019 (2)0.006 (2)−0.001 (2)−0.0006 (19)
C140.039 (3)0.029 (3)0.035 (3)−0.004 (2)−0.016 (2)0.002 (2)
C150.038 (3)0.024 (2)0.030 (3)−0.007 (2)−0.009 (2)0.003 (2)
C160.018 (2)0.027 (2)0.026 (3)−0.0031 (18)−0.0007 (18)−0.0023 (19)
C170.028 (3)0.031 (3)0.030 (3)0.001 (2)−0.004 (2)0.001 (2)
C180.029 (3)0.036 (3)0.045 (3)0.002 (2)−0.006 (2)0.004 (3)
C190.032 (3)0.040 (3)0.041 (3)−0.011 (2)−0.005 (2)−0.005 (3)
C200.026 (3)0.032 (3)0.034 (3)−0.009 (2)−0.002 (2)−0.003 (2)
C210.023 (2)0.023 (2)0.027 (3)−0.0027 (19)0.0017 (19)0.0021 (19)
C220.102 (12)0.050 (8)0.048 (9)0.001 (8)0.023 (8)0.001 (7)
Cl10.155 (3)0.0477 (11)0.0854 (17)0.0173 (13)0.0274 (17)0.0024 (11)

Geometric parameters (Å, °)

Sn—C102.125 (5)C10—C151.373 (7)
Sn—C162.141 (5)C10—C111.394 (7)
Sn—C42.157 (4)C11—C121.392 (8)
Sn—S12.4699 (13)C11—H110.9500
Sn—S23.0715 (13)C12—C131.378 (8)
S1—C11.756 (5)C12—H120.9500
S2—C11.680 (5)C13—C141.370 (7)
N1—C11.337 (6)C13—H130.9500
N1—C3i1.466 (6)C14—C151.403 (7)
N1—C21.473 (6)C14—H140.9500
C2—C31.527 (7)C15—H150.9500
C2—H2A0.9900C16—C171.396 (7)
C2—H2B0.9900C16—C211.400 (7)
C3—N1i1.466 (6)C17—C181.385 (7)
C3—H3A0.9900C17—H170.9500
C3—H3B0.9900C18—C191.395 (8)
C4—C51.394 (6)C18—H180.9500
C4—C91.403 (7)C19—C201.380 (8)
C5—C61.382 (7)C19—H190.9500
C5—H50.9500C20—C211.389 (7)
C6—C71.392 (7)C20—H200.9500
C6—H60.9500C21—H210.9500
C7—C81.380 (7)C22—Cl1ii1.784 (15)
C7—H70.9500C22—Cl11.896 (16)
C8—C91.392 (7)C22—H22A0.9900
C8—H80.9500C22—H22B0.9900
C9—H90.9500Cl1—C22ii1.784 (15)
C10—Sn—C16117.43 (18)C8—C9—H9119.7
C10—Sn—C4106.86 (18)C4—C9—H9119.7
C16—Sn—C4110.16 (18)C15—C10—C11118.3 (5)
C10—Sn—S1114.23 (13)C15—C10—Sn120.1 (4)
C16—Sn—S1112.36 (13)C11—C10—Sn121.7 (4)
C4—Sn—S192.74 (12)C12—C11—C10120.4 (5)
C10—Sn—S281.15 (12)C12—C11—H11119.8
C16—Sn—S284.41 (13)C10—C11—H11119.8
C4—Sn—S2156.03 (12)C13—C12—C11120.3 (5)
S1—Sn—S263.66 (4)C13—C12—H12119.9
C1—S1—Sn97.41 (16)C11—C12—H12119.9
C1—S2—Sn79.09 (16)C14—C13—C12120.2 (5)
C1—N1—C3i125.3 (4)C14—C13—H13119.9
C1—N1—C2122.6 (4)C12—C13—H13119.9
C3i—N1—C2111.8 (4)C13—C14—C15119.3 (5)
N1—C1—S2123.6 (4)C13—C14—H14120.4
N1—C1—S1117.0 (4)C15—C14—H14120.4
S2—C1—S1119.4 (3)C10—C15—C14121.6 (5)
N1—C2—C3109.6 (4)C10—C15—H15119.2
N1—C2—H2A109.7C14—C15—H15119.2
C3—C2—H2A109.7C17—C16—C21119.2 (5)
N1—C2—H2B109.7C17—C16—Sn118.9 (4)
C3—C2—H2B109.7C21—C16—Sn121.9 (4)
H2A—C2—H2B108.2C18—C17—C16120.2 (5)
N1i—C3—C2110.3 (4)C18—C17—H17119.9
N1i—C3—H3A109.6C16—C17—H17119.9
C2—C3—H3A109.6C17—C18—C19120.6 (5)
N1i—C3—H3B109.6C17—C18—H18119.7
C2—C3—H3B109.6C19—C18—H18119.7
H3A—C3—H3B108.1C20—C19—C18119.1 (5)
C5—C4—C9118.2 (4)C20—C19—H19120.4
C5—C4—Sn120.2 (3)C18—C19—H19120.4
C9—C4—Sn121.5 (3)C19—C20—C21121.0 (5)
C6—C5—C4121.2 (5)C19—C20—H20119.5
C6—C5—H5119.4C21—C20—H20119.5
C4—C5—H5119.4C20—C21—C16119.8 (5)
C5—C6—C7119.8 (5)C20—C21—H21120.1
C5—C6—H6120.1C16—C21—H21120.1
C7—C6—H6120.1Cl1ii—C22—Cl1102.9 (8)
C8—C7—C6120.1 (5)Cl1ii—C22—H22A111.2
C8—C7—H7120.0Cl1—C22—H22A111.2
C6—C7—H7120.0Cl1ii—C22—H22B111.2
C7—C8—C9120.0 (5)Cl1—C22—H22B111.2
C7—C8—H8120.0H22A—C22—H22B109.1
C9—C8—H8120.0C22ii—Cl1—C2277.1 (8)
C8—C9—C4120.6 (5)
C10—Sn—S1—C1−69.6 (2)Sn—C4—C9—C8176.9 (4)
C16—Sn—S1—C167.4 (2)C16—Sn—C10—C15175.8 (4)
C4—Sn—S1—C1−179.5 (2)C4—Sn—C10—C1551.5 (4)
S2—Sn—S1—C1−3.88 (16)S1—Sn—C10—C15−49.5 (4)
C10—Sn—S2—C1126.8 (2)S2—Sn—C10—C15−105.3 (4)
C16—Sn—S2—C1−114.3 (2)C16—Sn—C10—C11−5.6 (5)
C4—Sn—S2—C115.0 (4)C4—Sn—C10—C11−129.8 (5)
S1—Sn—S2—C14.10 (17)S1—Sn—C10—C11129.2 (4)
C3i—N1—C1—S2−175.8 (4)S2—Sn—C10—C1173.4 (4)
C2—N1—C1—S2−2.8 (7)C15—C10—C11—C122.7 (9)
C3i—N1—C1—S14.6 (7)Sn—C10—C11—C12−176.0 (5)
C2—N1—C1—S1177.6 (4)C10—C11—C12—C13−1.2 (10)
Sn—S2—C1—N1174.5 (4)C11—C12—C13—C14−0.4 (9)
Sn—S2—C1—S1−5.9 (2)C12—C13—C14—C150.5 (8)
Sn—S1—C1—N1−173.0 (3)C11—C10—C15—C14−2.6 (8)
Sn—S1—C1—S27.3 (3)Sn—C10—C15—C14176.1 (4)
C1—N1—C2—C3−116.5 (5)C13—C14—C15—C101.1 (8)
C3i—N1—C2—C357.4 (5)C10—Sn—C16—C17−143.2 (4)
N1—C2—C3—N1i−56.4 (5)C4—Sn—C16—C17−20.6 (4)
C10—Sn—C4—C518.7 (4)S1—Sn—C16—C1781.2 (4)
C16—Sn—C4—C5−110.0 (4)S2—Sn—C16—C17139.8 (4)
S1—Sn—C4—C5135.0 (4)C10—Sn—C16—C2139.4 (5)
S2—Sn—C4—C5125.3 (3)C4—Sn—C16—C21162.0 (4)
C10—Sn—C4—C9−157.4 (4)S1—Sn—C16—C21−96.1 (4)
C16—Sn—C4—C974.0 (4)S2—Sn—C16—C21−37.6 (4)
S1—Sn—C4—C9−41.1 (4)C21—C16—C17—C180.2 (8)
S2—Sn—C4—C9−50.8 (6)Sn—C16—C17—C18−177.2 (4)
C9—C4—C5—C60.3 (7)C16—C17—C18—C19−0.5 (9)
Sn—C4—C5—C6−175.9 (4)C17—C18—C19—C200.6 (9)
C4—C5—C6—C7−1.4 (7)C18—C19—C20—C21−0.4 (9)
C5—C6—C7—C81.6 (8)C19—C20—C21—C160.0 (8)
C6—C7—C8—C9−0.5 (8)C17—C16—C21—C200.0 (7)
C7—C8—C9—C4−0.6 (8)Sn—C16—C21—C20177.4 (4)
C5—C4—C9—C80.7 (7)Cl1ii—C22—Cl1—C22ii0.000 (2)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2481).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tiekink, E. R. T. (2008). Appl. Organomet. Chem.22, 553–550.
  • Yin, H.-D., Ma, C.-L., Wang, Y., Fang, H.-X. & Shao, J.-X. (2002). Chin. J. Chem.60, 897–903.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography