PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1170.
Published online 2008 August 16. doi:  10.1107/S1600536808025671
PMCID: PMC2960553

Diaqua­bis(3,7-dichloro­quinoline-8-carboxyl­ato)zinc(II) monohydrate

Abstract

In the title compound, [Zn(C10H4Cl2NO2)2(H2O)2]·H2O, the Zn atom has a distorted square-pyramidal geometry comprising two O atoms and one N atom from two distinct 3,7-dichloro­quinoline-8-carboxyl­ate ligands, and two water mol­ecules. The free water mol­ecules are involved in inter­molecular O—H(...)O hydrogen bonding with the coordinated water mol­ecules and carboxyl­ate O atoms, to give a one-dimensional helical chain along the [100] direction.

Related literature

For related literature, see: Adnan et al. (2003 [triangle]); Che et al. (2005 [triangle]); Chen et al. (2001 [triangle]); Li et al. (2008 [triangle]); Lumme et al. (1984 [triangle]); Yang et al. (2005 [triangle]); Zhang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1170-scheme1.jpg

Experimental

Crystal data

  • [Zn(C10H4Cl2NO2)2(H2O)2]·H2O
  • M r = 601.50
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1170-efi1.jpg
  • a = 6.8678 (3) Å
  • b = 12.6996 (5) Å
  • c = 12.9317 (5) Å
  • α = 87.572 (1)°
  • β = 82.893 (1)°
  • γ = 82.255 (1)°
  • V = 1108.63 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.64 mm−1
  • T = 296 (2) K
  • 0.21 × 0.17 × 0.15 mm

Data collection

  • Rigaku Mercury diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2001 [triangle]) T min = 0.725, T max = 0.791
  • 14022 measured reflections
  • 4308 independent reflections
  • 3099 reflections with I > 2σ(I)
  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.094
  • S = 0.97
  • 4308 reflections
  • 307 parameters
  • H-atom parameters constrained
  • Δρmax = 1.20 e Å−3
  • Δρmin = −0.80 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025671/sg2255sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025671/sg2255Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Program for Excellent Talents in Huaiyin Teachers College (grant Nos. ETHYTC and 07QNZC010) and by the Natural Science Foundation of the Education Committee of Guangxi Province.

supplementary crystallographic information

Comment

Quinolinecarboxylate derivatives and their complexes have attracted considerable interest, because of their interesting high germicidal, antitumoral and pharmacological properties (Adnan et al., 2003; Lumme et al., 1984). Although some transition metal complexes of quinolinecarboxylate ligands have been reported (Che et al., 2005; Chen et al., 2001; Yang et al., 2005), the crystal structures of the 3,7-Dichloro-8-quinolinecarboxylate and its complexes are limited in number, the only two examples are [M(C10H4Cl2NO2)2]n(M = Ni, Co) (Li et al., 2008; Zhang et al., 2007). we report herein on the structure of [Zn(C10H4Cl2NO2)2(H2O)2].H2O, (I).

The title complex, (I) crystallizes in the triclinic space group P1, with free water molecules in the crystal structure.The Zn(II) center exhibits a distorted square-pyramidal geometry defined by two O atoms and one N atom from two distinct 3,7-Dichloro-8-quinolinecarboxylate ligands, and two water molecules (Fig.1). The N1, O1, O3 and O5 atoms form the base plane, while the O6 atom occupies the axial position.The carboxylate group is bound in a monodentate fashion, with a weak intramolecular O—H···O H-bond between the carboxylate O atom and water molecules. The [Zn(C10H4Cl2NO2)2(H2O)2] molecules are linked via these H-bond interactions into a 1-D helical chain along the [100] direction (Fig. 2).

Experimental

The source materials of Zinc hydroxide (0.005 g) and Quinclorac (3,7-Dichloro-8-quinolinecarboxylic acid) (0.024 g) dissolved in 10 ml distilled water and were carefully mixed, and then loaded into a Teflon-lined stainless steel autoclave. The sealed autoclave was heated to 433 K and maintained at this temperature for 48 h. After cooling to room temperature, then some colorless column crystal was obtained.

Refinement

All H atoms were positioned geometrically and were allowed to ride on their parent atoms.

Figures

Fig. 1.
The structure of (I), with the atomic numbering scheme and displacement ellipsoids at the 50% probability level. All H atoms have been omitted for clarity.
Fig. 2.
Part of the crystal structure of (I), showing the 1-D helical chain.H atoms bonded to C atoms have been omitted for clarity.

Crystal data

[Zn(C10H4Cl2NO2)2(H2O)2]·H2OZ = 2
Mr = 601.50F000 = 604
Triclinic, P1Dx = 1.802 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.8678 (3) ÅCell parameters from 1973 reflections
b = 12.6996 (5) Åθ = 1.6–26.0º
c = 12.9317 (5) ŵ = 1.64 mm1
α = 87.572 (1)ºT = 296 (2) K
β = 82.893 (1)ºColumn, colourless
γ = 82.255 (1)º0.21 × 0.17 × 0.15 mm
V = 1108.63 (8) Å3

Data collection

Rigaku Mercury diffractometer4308 independent reflections
Radiation source: fine-focus sealed tube3099 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.080
Detector resolution: 7.31 pixels mm-1θmax = 26.0º
T = 296(2) Kθmin = 1.6º
ω scansh = −8→8
Absorption correction: multi-scan(CrystalClear; Rigaku/MSC, 2001)k = −15→15
Tmin = 0.725, Tmax = 0.791l = −15→14
14022 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.094  w = 1/[σ2(Fo2) + (0.0408P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
4308 reflectionsΔρmax = 1.20 e Å3
307 parametersΔρmin = −0.80 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2965 (5)0.6256 (3)0.2794 (3)0.0197 (8)
H10.30700.67130.22150.024*
C20.3295 (5)0.5161 (3)0.2636 (3)0.0194 (8)
C30.3176 (5)0.4475 (3)0.3464 (3)0.0209 (8)
H30.33800.37460.33660.025*
C40.2565 (5)0.4215 (3)0.5377 (3)0.0210 (8)
H40.27780.34800.53150.025*
C50.2088 (5)0.4641 (3)0.6336 (3)0.0241 (9)
H50.19210.42010.69250.029*
C60.1848 (5)0.5751 (3)0.6434 (3)0.0186 (8)
C70.2042 (5)0.6439 (3)0.5590 (3)0.0176 (8)
C80.2434 (5)0.5998 (3)0.4583 (3)0.0173 (8)
C90.2741 (5)0.4879 (3)0.4474 (3)0.0188 (8)
C100.2017 (6)0.7613 (3)0.5715 (3)0.0220 (8)
C11−0.2472 (5)1.1168 (3)0.1346 (3)0.0194 (8)
H11−0.24861.16750.18460.023*
C12−0.2620 (5)1.1520 (3)0.0307 (3)0.0182 (8)
C13−0.2648 (5)1.0809 (3)−0.0443 (3)0.0179 (8)
H13−0.27561.1034−0.11290.022*
C14−0.2534 (5)0.8915 (3)−0.0880 (3)0.0221 (8)
H14−0.26430.9098−0.15770.027*
C15−0.2399 (5)0.7872 (3)−0.0559 (3)0.0213 (8)
H15−0.24270.7346−0.10340.026*
C16−0.2218 (5)0.7597 (3)0.0488 (3)0.0196 (8)
C17−0.2162 (5)0.8341 (3)0.1213 (3)0.0167 (8)
C18−0.2329 (5)0.9426 (3)0.0898 (3)0.0170 (8)
C19−0.2509 (5)0.9721 (3)−0.0157 (3)0.0172 (8)
C20−0.1707 (5)0.8066 (3)0.2315 (3)0.0179 (8)
Cl10.37704 (15)0.47230 (7)0.13739 (7)0.0300 (2)
Cl20.12831 (15)0.62268 (8)0.76860 (7)0.0300 (2)
Cl3−0.28261 (14)1.28675 (7)0.00156 (7)0.0247 (2)
Cl4−0.19519 (15)0.62565 (7)0.08517 (8)0.0295 (2)
N10.2514 (4)0.6674 (2)0.3722 (2)0.0185 (7)
N2−0.2316 (4)1.0165 (2)0.1644 (2)0.0190 (7)
O10.0705 (4)0.82485 (19)0.52664 (19)0.0294 (7)
O20.3222 (4)0.7909 (2)0.6231 (2)0.0325 (7)
O30.0098 (3)0.80624 (19)0.24133 (19)0.0222 (6)
O4−0.3021 (4)0.78885 (19)0.3020 (2)0.0289 (6)
O5−0.0852 (4)0.9774 (2)0.3738 (2)0.0336 (7)
H5A−0.08001.02950.41260.040*
H5B−0.13980.98420.31750.040*
O60.3458 (4)0.9015 (2)0.3214 (2)0.0350 (7)
H6A0.45890.86470.31950.042*
H6B0.30900.96570.33910.042*
O70.3413 (5)0.1059 (3)0.3655 (3)0.0858 (14)
H7B0.45190.11890.38150.103*
H7C0.24910.12730.41290.103*
Zn10.10699 (6)0.83389 (3)0.37255 (3)0.01835 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.020 (2)0.0198 (19)0.019 (2)0.0004 (15)−0.0046 (16)−0.0023 (16)
C20.0166 (19)0.022 (2)0.020 (2)−0.0014 (15)−0.0030 (15)−0.0076 (15)
C30.020 (2)0.0158 (19)0.027 (2)−0.0019 (15)−0.0032 (16)−0.0063 (16)
C40.019 (2)0.0162 (18)0.029 (2)−0.0035 (15)−0.0068 (17)−0.0012 (16)
C50.024 (2)0.023 (2)0.026 (2)−0.0050 (16)−0.0072 (17)0.0055 (17)
C60.0165 (19)0.026 (2)0.0133 (19)−0.0017 (15)−0.0024 (15)−0.0039 (15)
C70.0130 (18)0.0215 (19)0.019 (2)0.0014 (15)−0.0071 (15)−0.0027 (15)
C80.0145 (18)0.0200 (19)0.017 (2)−0.0006 (15)−0.0037 (15)−0.0004 (15)
C90.0177 (19)0.0184 (19)0.019 (2)0.0008 (15)−0.0025 (15)−0.0004 (15)
C100.032 (2)0.0191 (19)0.0123 (19)0.0004 (17)0.0038 (17)−0.0019 (15)
C110.020 (2)0.0167 (19)0.021 (2)0.0004 (15)−0.0006 (16)−0.0068 (15)
C120.0152 (18)0.0160 (18)0.022 (2)0.0006 (15)0.0008 (15)0.0017 (15)
C130.0128 (18)0.0232 (19)0.018 (2)−0.0009 (15)−0.0041 (15)0.0017 (16)
C140.023 (2)0.029 (2)0.014 (2)−0.0046 (17)0.0010 (16)0.0006 (16)
C150.0192 (19)0.022 (2)0.023 (2)−0.0018 (16)−0.0013 (16)−0.0082 (16)
C160.0161 (19)0.0153 (18)0.028 (2)−0.0011 (15)−0.0049 (16)0.0000 (16)
C170.0068 (17)0.0229 (19)0.021 (2)−0.0022 (14)−0.0032 (14)0.0007 (15)
C180.0106 (17)0.0219 (19)0.0188 (19)−0.0006 (14)−0.0037 (15)−0.0023 (15)
C190.0087 (17)0.0237 (19)0.019 (2)−0.0008 (15)−0.0023 (14)−0.0016 (15)
C200.022 (2)0.0102 (17)0.021 (2)0.0001 (15)−0.0038 (16)−0.0012 (15)
Cl10.0431 (6)0.0251 (5)0.0207 (5)−0.0030 (4)0.0021 (4)−0.0090 (4)
Cl20.0445 (6)0.0278 (5)0.0170 (5)−0.0053 (4)−0.0006 (4)−0.0009 (4)
Cl30.0300 (5)0.0170 (5)0.0251 (5)0.0009 (4)−0.0006 (4)0.0019 (4)
Cl40.0426 (6)0.0176 (5)0.0297 (6)−0.0056 (4)−0.0077 (5)−0.0008 (4)
N10.0214 (16)0.0166 (15)0.0173 (17)0.0003 (13)−0.0044 (13)−0.0005 (13)
N20.0186 (16)0.0175 (16)0.0202 (17)−0.0007 (13)−0.0011 (13)−0.0023 (13)
O10.0448 (18)0.0228 (14)0.0167 (14)0.0110 (13)−0.0039 (13)−0.0015 (11)
O20.0441 (18)0.0280 (15)0.0284 (16)−0.0120 (13)−0.0078 (14)−0.0041 (12)
O30.0171 (14)0.0299 (14)0.0196 (14)0.0019 (11)−0.0063 (11)−0.0047 (11)
O40.0284 (15)0.0272 (15)0.0289 (16)−0.0032 (12)0.0019 (13)0.0085 (12)
O50.0471 (18)0.0223 (14)0.0319 (17)0.0073 (13)−0.0161 (14)−0.0108 (12)
O60.0202 (15)0.0234 (15)0.060 (2)−0.0003 (12)−0.0006 (14)−0.0041 (13)
O70.050 (2)0.075 (3)0.132 (4)−0.030 (2)0.031 (2)−0.055 (3)
Zn10.0206 (2)0.0172 (2)0.0168 (2)−0.00023 (17)−0.00297 (17)−0.00061 (17)

Geometric parameters (Å, °)

C1—N11.316 (4)C13—H130.9300
C1—C21.399 (5)C14—C151.365 (5)
C1—H10.9300C14—C191.419 (5)
C2—C31.352 (5)C14—H140.9300
C2—Cl11.725 (4)C15—C161.400 (5)
C3—C91.407 (5)C15—H150.9300
C3—H30.9300C16—C171.366 (5)
C4—C51.359 (5)C16—Cl41.739 (3)
C4—C91.414 (5)C17—C181.414 (5)
C4—H40.9300C17—C201.514 (5)
C5—C61.406 (5)C18—N21.376 (4)
C5—H50.9300C18—C191.415 (5)
C6—C71.374 (5)C20—O41.237 (4)
C6—Cl21.732 (4)C20—O31.261 (4)
C7—C81.421 (5)N1—Zn12.211 (3)
C7—C101.504 (5)O1—Zn11.978 (2)
C8—N11.377 (4)O3—Zn11.960 (2)
C8—C91.419 (5)O5—Zn12.101 (2)
C10—O21.231 (4)O5—H5A0.85
C10—O11.301 (4)O5—H5B0.86
C11—N21.310 (4)O6—Zn11.982 (2)
C11—C121.410 (5)O6—H6A0.85
C11—H110.9300O6—H6B0.85
C12—C131.356 (5)O7—H7B0.85
C12—Cl31.727 (3)O7—H7C0.85
C13—C191.409 (5)
N1—C1—C2123.4 (3)C14—C15—C16119.8 (3)
N1—C1—H1118.3C14—C15—H15120.1
C2—C1—H1118.3C16—C15—H15120.1
C3—C2—C1119.8 (3)C17—C16—C15122.2 (3)
C3—C2—Cl1121.7 (3)C17—C16—Cl4119.5 (3)
C1—C2—Cl1118.5 (3)C15—C16—Cl4118.2 (3)
C2—C3—C9119.2 (3)C16—C17—C18118.8 (3)
C2—C3—H3120.4C16—C17—C20123.6 (3)
C9—C3—H3120.4C18—C17—C20117.3 (3)
C5—C4—C9120.5 (3)N2—C18—C17118.0 (3)
C5—C4—H4119.7N2—C18—C19122.2 (3)
C9—C4—H4119.7C17—C18—C19119.9 (3)
C4—C5—C6119.7 (3)C13—C19—C18118.2 (3)
C4—C5—H5120.1C13—C19—C14122.8 (3)
C6—C5—H5120.1C18—C19—C14119.0 (3)
C7—C6—C5122.6 (3)O4—C20—O3125.9 (3)
C7—C6—Cl2120.7 (3)O4—C20—C17121.5 (3)
C5—C6—Cl2116.7 (3)O3—C20—C17112.6 (3)
C6—C7—C8117.8 (3)C1—N1—C8118.3 (3)
C6—C7—C10121.9 (3)C1—N1—Zn1115.1 (2)
C8—C7—C10120.1 (3)C8—N1—Zn1123.8 (2)
N1—C8—C9121.0 (3)C11—N2—C18117.6 (3)
N1—C8—C7118.9 (3)C10—O1—Zn1117.0 (2)
C9—C8—C7120.1 (3)C20—O3—Zn1123.7 (2)
C3—C9—C4122.6 (3)Zn1—O5—H5A124.5
C3—C9—C8118.3 (3)Zn1—O5—H5B109.3
C4—C9—C8119.1 (3)H5A—O5—H5B123.2
O2—C10—O1124.4 (3)Zn1—O6—H6A119.1
O2—C10—C7118.4 (3)Zn1—O6—H6B101.5
O1—C10—C7117.2 (3)H6A—O6—H6B129.9
N2—C11—C12123.4 (3)H7B—O7—H7C110.1
N2—C11—H11118.3O3—Zn1—O1147.92 (11)
C12—C11—H11118.3O3—Zn1—O6101.43 (11)
C13—C12—C11120.2 (3)O1—Zn1—O6110.65 (12)
C13—C12—Cl3120.9 (3)O3—Zn1—O586.43 (10)
C11—C12—Cl3118.9 (3)O1—Zn1—O590.82 (10)
C12—C13—C19118.4 (3)O6—Zn1—O594.10 (11)
C12—C13—H13120.8O3—Zn1—N187.67 (10)
C19—C13—H13120.8O1—Zn1—N188.61 (10)
C15—C14—C19120.3 (3)O6—Zn1—N197.37 (11)
C15—C14—H14119.8O5—Zn1—N1167.94 (11)
C19—C14—H14119.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O1i0.852.052.889 (4)166
O5—H5B···N20.862.163.002 (4)169
O6—H6A···O4ii0.851.782.628 (4)174
O6—H6B···O7iii0.851.872.677 (4)156
O7—H7B···O2iv0.852.042.827 (4)153
O7—H7C···O1v0.852.253.029 (4)153

Symmetry codes: (i) −x, −y+2, −z+1; (ii) x+1, y, z; (iii) x, y+1, z; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2255).

References

  • Adnan, B., Hesham, F., Sherif, R. & Azza, B. (2003). Eur. J. Med. Chem.38, 27–36. [PubMed]
  • Che, G.-B., Liu, C.-B., Cui, Y.-C. & Li, C.-B. (2005). Acta Cryst. E61, m2207–m2208.
  • Chen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2001). Inorg. Chem. Commun.5, 35–37.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Li, Z., Wu, F., Gong, Y., Zhang, Y. & Bai, C. (2008). Acta Cryst. E64, m227. [PMC free article] [PubMed]
  • Lumme, P., Elo, H. & Janne, J. (1984). Inorg. Chim. Acta, 92, 241–251.
  • Rigaku/MSC (2001). CrystalClear Version 1.30. Rigaku/MSC, The Woodlands, Texas, USA.
  • Rigaku/MSC (2004). CrystalStructure Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, G. W., Yuan, R. X. & Xie, Y. R. (2005). Chin. J. Inorg. Chem.21, 120–121.
  • Zhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63, m1557.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography