PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1758.
Published online 2008 August 16. doi:  10.1107/S1600536808025816
PMCID: PMC2960552

4-Chloro-N′-(5-chloro-2-hydroxy­benzyl­idene)benzohydrazide

Abstract

The mol­ecule of the title compound, C14H10Cl2N2O2, displays a trans configuration with respect to the C=N double bond and has an intramolecular O—H(...)N hydrogen bond. The dihedral angle between the two benzene rings is 1.4 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H(...)O hydrogen bonds, forming chains running along the a direction.

Related literature

For related structures, see Yang (2006a [triangle],b [triangle],c [triangle],d [triangle],e [triangle], 2007a [triangle],b [triangle],c [triangle]); Yang & Guo (2006 [triangle]). For related literature, see: Allen et al. (1987 [triangle]); Bernardo et al. (1996 [triangle]); Musie et al. (2001 [triangle]); Paul et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1758-scheme1.jpg

Experimental

Crystal data

  • C14H10Cl2N2O2
  • M r = 309.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1758-efi1.jpg
  • a = 5.921 (2) Å
  • b = 31.245 (3) Å
  • c = 7.428 (3) Å
  • β = 92.182 (6)°
  • V = 1373.2 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.47 mm−1
  • T = 298 (2) K
  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.911, T max = 0.924
  • 6465 measured reflections
  • 2239 independent reflections
  • 1790 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.097
  • S = 1.03
  • 2239 reflections
  • 185 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025816/om2256sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025816/om2256Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges Key Laboratory Construction Support from the Education Office of Shanxi Province (Project No. 05JS43).

supplementary crystallographic information

Comment

Schiff base compounds have been of great interest for a long time. These compounds play an important role in the development of coordination chemistry (Musie et al., 2001; Bernardo et al., 1996; Paul et al., 2002). Recently, we have reported a few Schiff base compounds (Yang, 2006a,b,c,d,e, 2007a,b,c; Yang & Guo, 2006). As a further investigation of this work, the crystal structure of the title compound is reported here.

The molecule of the title compound, displays a trans configuration with respect to the C═N double bond (Fig. 1). The dihedral angle between the two benzene rings is 1.4 (2)°. All the bond lengths are within normal ranges (Allen et al., 1987). The C7═N1 bond length of 1.270 (3) Å conforms to the value for a double bond. The bond length of 1.343 (3) Å between atoms C8 and N2 is intermediate between a N—N single bond and a N═N double bond, because of conjugation effects in the molecule. There is a strong intramolecular hydrogen bond between the hydroxyl hydrogen and N1.

In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains running along the a direction (Fig. 2).

Experimental

5-Chlorosalicylaldehyde (0.1 mmol, 15.6 mg) and 4-chlorobenzohydrazide (0.1 mmol, 17.0 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Crystals of the title compound were formed by gradual evaporation of the solvent over a period of 13 days at room temperature.

Refinement

Atom H2 was located in a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with O—H distance of 0.82 Å, C—H distances of 0.93 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.
The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Molecular packing as viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H10Cl2N2O2F000 = 632
Mr = 309.14Dx = 1.495 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2553 reflections
a = 5.921 (2) Åθ = 2.5–24.3º
b = 31.245 (3) ŵ = 0.47 mm1
c = 7.428 (3) ÅT = 298 (2) K
β = 92.182 (6)ºBlock, colourless
V = 1373.2 (7) Å30.20 × 0.18 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2239 independent reflections
Radiation source: fine-focus sealed tube1790 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
T = 298(2) Kθmax = 24.4º
ω scansθmin = 2.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −6→6
Tmin = 0.911, Tmax = 0.924k = −36→35
6465 measured reflectionsl = −8→6

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097  w = 1/[σ2(Fo2) + (0.0381P)2 + 0.5294P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2239 reflectionsΔρmax = 0.25 e Å3
185 parametersΔρmin = −0.25 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.76783 (16)0.49243 (2)0.80632 (14)0.1068 (3)
Cl21.33065 (12)0.06887 (2)0.76621 (10)0.0742 (2)
N10.6688 (3)0.29434 (6)0.6801 (2)0.0488 (4)
N20.8017 (3)0.25847 (6)0.7096 (2)0.0523 (5)
O10.2928 (3)0.33583 (5)0.5861 (2)0.0657 (5)
H10.37210.31460.60450.099*
O20.6020 (3)0.22073 (5)0.5012 (2)0.0640 (5)
C10.6271 (3)0.36918 (6)0.7166 (3)0.0445 (5)
C20.4080 (4)0.37128 (7)0.6396 (3)0.0504 (5)
C30.3035 (4)0.41076 (9)0.6172 (3)0.0665 (7)
H30.15760.41210.56660.080*
C40.4116 (5)0.44766 (9)0.6685 (4)0.0729 (7)
H40.34010.47400.65220.087*
C50.6271 (4)0.44569 (7)0.7444 (3)0.0630 (6)
C60.7329 (4)0.40713 (7)0.7690 (3)0.0528 (5)
H60.87790.40630.82170.063*
C70.7485 (4)0.32942 (7)0.7410 (3)0.0468 (5)
H70.88820.32950.80270.056*
C80.7583 (3)0.22285 (6)0.6132 (3)0.0449 (5)
C90.9091 (3)0.18574 (6)0.6525 (2)0.0424 (5)
C100.8262 (4)0.14516 (7)0.6112 (3)0.0481 (5)
H100.68230.14230.55780.058*
C110.9534 (4)0.10922 (7)0.6479 (3)0.0521 (5)
H110.89580.08210.62180.062*
C121.1670 (4)0.11401 (7)0.7236 (3)0.0489 (5)
C131.2546 (4)0.15368 (7)0.7646 (3)0.0509 (5)
H131.39930.15630.81660.061*
C141.1252 (3)0.18949 (7)0.7278 (3)0.0479 (5)
H141.18400.21650.75380.058*
H20.913 (3)0.2592 (8)0.795 (3)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1184 (7)0.0481 (4)0.1535 (8)−0.0066 (4)−0.0009 (6)0.0049 (4)
Cl20.0782 (5)0.0561 (4)0.0877 (5)0.0189 (3)−0.0070 (4)−0.0040 (3)
N10.0507 (10)0.0480 (10)0.0466 (10)0.0072 (8)−0.0104 (8)−0.0010 (8)
N20.0576 (12)0.0464 (10)0.0512 (11)0.0081 (9)−0.0192 (9)−0.0064 (8)
O10.0508 (9)0.0777 (11)0.0674 (11)0.0052 (8)−0.0123 (8)−0.0069 (9)
O20.0722 (11)0.0528 (9)0.0641 (10)−0.0025 (8)−0.0340 (9)−0.0001 (7)
C10.0462 (12)0.0511 (12)0.0361 (11)0.0060 (10)0.0015 (9)0.0039 (9)
C20.0474 (13)0.0632 (14)0.0404 (12)0.0063 (11)0.0003 (10)0.0007 (10)
C30.0538 (14)0.0839 (18)0.0615 (15)0.0244 (14)−0.0019 (12)0.0091 (13)
C40.0797 (19)0.0607 (16)0.0786 (18)0.0257 (14)0.0077 (15)0.0111 (13)
C50.0711 (17)0.0483 (13)0.0699 (16)0.0049 (12)0.0069 (13)0.0087 (11)
C60.0535 (13)0.0513 (13)0.0536 (13)0.0026 (11)0.0015 (10)0.0051 (10)
C70.0451 (11)0.0509 (13)0.0439 (12)0.0045 (10)−0.0065 (9)0.0019 (9)
C80.0491 (12)0.0444 (11)0.0406 (11)−0.0043 (10)−0.0066 (10)0.0022 (9)
C90.0468 (12)0.0454 (11)0.0346 (10)−0.0013 (9)−0.0019 (9)−0.0023 (8)
C100.0471 (12)0.0512 (12)0.0455 (12)−0.0030 (10)−0.0042 (9)−0.0049 (10)
C110.0595 (14)0.0447 (12)0.0520 (13)−0.0051 (11)0.0036 (11)−0.0055 (10)
C120.0548 (13)0.0477 (12)0.0446 (12)0.0083 (10)0.0063 (10)−0.0021 (9)
C130.0450 (12)0.0576 (14)0.0499 (13)0.0044 (10)−0.0023 (10)−0.0070 (10)
C140.0485 (12)0.0460 (12)0.0491 (12)−0.0026 (10)−0.0014 (10)−0.0066 (9)

Geometric parameters (Å, °)

Cl1—C51.735 (3)C4—H40.9300
Cl2—C121.734 (2)C5—C61.367 (3)
N1—C71.270 (3)C6—H60.9300
N1—N21.382 (2)C7—H70.9300
N2—C81.343 (3)C8—C91.486 (3)
N2—H20.898 (10)C9—C141.382 (3)
O1—C21.352 (3)C9—C101.390 (3)
O1—H10.8200C10—C111.374 (3)
O2—C81.222 (2)C10—H100.9300
C1—C61.390 (3)C11—C121.373 (3)
C1—C21.399 (3)C11—H110.9300
C1—C71.443 (3)C12—C131.373 (3)
C2—C31.387 (3)C13—C141.377 (3)
C3—C41.366 (4)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.376 (4)
C7—N1—N2116.23 (17)N1—C7—H7119.3
C8—N2—N1119.42 (17)C1—C7—H7119.3
C8—N2—H2121.1 (16)O2—C8—N2122.17 (19)
N1—N2—H2119.4 (16)O2—C8—C9121.69 (18)
C2—O1—H1109.5N2—C8—C9116.13 (17)
C6—C1—C2118.39 (19)C14—C9—C10118.74 (19)
C6—C1—C7118.83 (19)C14—C9—C8123.63 (18)
C2—C1—C7122.77 (19)C10—C9—C8117.63 (18)
O1—C2—C3118.4 (2)C11—C10—C9121.0 (2)
O1—C2—C1122.06 (19)C11—C10—H10119.5
C3—C2—C1119.5 (2)C9—C10—H10119.5
C4—C3—C2121.0 (2)C12—C11—C10118.8 (2)
C4—C3—H3119.5C12—C11—H11120.6
C2—C3—H3119.5C10—C11—H11120.6
C3—C4—C5119.6 (2)C11—C12—C13121.6 (2)
C3—C4—H4120.2C11—C12—Cl2119.07 (17)
C5—C4—H4120.2C13—C12—Cl2119.34 (18)
C6—C5—C4120.5 (2)C12—C13—C14119.1 (2)
C6—C5—Cl1119.6 (2)C12—C13—H13120.4
C4—C5—Cl1119.96 (19)C14—C13—H13120.4
C5—C6—C1121.0 (2)C13—C14—C9120.7 (2)
C5—C6—H6119.5C13—C14—H14119.6
C1—C6—H6119.5C9—C14—H14119.6
N1—C7—C1121.45 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.898 (10)1.965 (13)2.826 (2)160 (2)
O1—H1···N10.821.932.647 (2)145

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2256).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. & Meunier, B. (1996). Inorg. Chem.35, 387–396. [PubMed]
  • Bruker (2007). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem.40, 3336–3341. [PubMed]
  • Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem.41, 5803–5809. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, D.-S. (2006a). Acta Cryst. E62, o1395–o1396.
  • Yang, D.-S. (2006b). Acta Cryst. E62, o1591–o1592.
  • Yang, D.-S. (2006c). Acta Cryst. E62, o2365–o2366.
  • Yang, D.-S. (2006d). Acta Cryst. E62, o3755–o3756.
  • Yang, D.-S. (2006e). Acta Cryst. E62, o3792–o3793.
  • Yang, D.-S. (2007a). J. Chem. Crystallogr.37, 343–348.
  • Yang, D.-S. (2007b). Acta Cryst. E63, o3738.
  • Yang, D.-S. (2007c). Acta Cryst. E63, o3739.
  • Yang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414–o4415.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography