PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1696.
Published online 2008 August 6. doi:  10.1107/S1600536808024598
PMCID: PMC2960543

3-(5,6,7,8-Tetra­hydro-2-naphth­yl)iso­benzofuran-1(3H)-one

Abstract

The title compound, C18H16O2, was prepared by reduction of 2-(5,6,7,8-tetra­hydro-2-naphtho­yl)benzoic acid with zinc dust. The benzene ring in the tetra­hydro­naphthyl substituent is nearly perpendicular to the plane of the isobenzofuran-1(3H)-one ring [87.15 (4)°]. The cyclo­hexane unit has a half-chair conformation in which two methylene groups in the tetra­methyl­ene bridge are disordered over two positions; the site-occupancy factors are 0.838 (4) and 0.162 (4). The crystal structure exhibits alternating isobenzofuran-1(3H)-one and tetra­hydro­naphthalene layers.

Related literature

For related mol­ecular structures, including a 3-phenyl isobenzofuran-1(3H)-one system, see: Chan & Scheidt (2006 [triangle]); Kalyani & Vijayan (1969 [triangle]); Vijayan et al. (2006 [triangle]). For related literature, see: Konosonoks et al. (2005 [triangle]); Schroeter (1921 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1696-scheme1.jpg

Experimental

Crystal data

  • C18H16O2
  • M r = 264.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1696-efi1.jpg
  • a = 11.2950 (11) Å
  • b = 15.8251 (10) Å
  • c = 7.8092 (10) Å
  • β = 109.0970 (10)°
  • V = 1319.0 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 223 K
  • 0.5 × 0.5 × 0.03 mm

Data collection

  • Rigaku/MSC Mercury CCD area-detector diffractometer
  • Absorption correction: numerical (NUMABS; Higashi, 1999 [triangle]) T min = 0.980, T max = 0.995
  • 5765 measured reflections
  • 2955 independent reflections
  • 2502 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.108
  • S = 1.1
  • 2955 reflections
  • 200 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear and WinGX (Farrugia, 1999 [triangle]); program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024598/pk2111sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024598/pk2111Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Instrument Center of the Institute for Molecular Science for the X-ray structural analysis. This work was supported by a Grant-in-Aid (No. 20550128) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

supplementary crystallographic information

Comment

A number of 3-phenylisobenzofuran-1(3H)-one derivatives have been prepared from the corresponding 2-benzoylbenzoic acid by reduction using zinc dust. Several crystal structures including 3-phenylisobenzofuran-1(3H)-one were reported (Chan & Scheidt, 2006; Kalyani & Vijayan, 1969; Konosonoks et al., 2005; Vijayan et al., 2006). The title compound, which was first prepared by Schroeter (1921), can be regarded as a derivative of 3-phenylisobenzofuran-1(3H)-one by annelation of cyclohexane to the substituent phenyl ring. In order to ascertain the effect of the annelation of cyclohexane into the structure, X-ray analysis was performed.

The molecular structure is shown in Fig. 1. The isobenzofuran-1(3H)-one moiety is essentially planar. The benzene ring within the tetrahydronaphthyl substituent is nearly perpendicular to the plane of the isobenzofuran-1(3H)-one ring (87.13 (3)°). The dihedral angle O1—C2—C10—C9 between the isobenzofuran-1(3H)-one ring and the benzene ring is 58.55 (12)°, and is smaller than that (64.49°) of the corresponding 3-phenylisobenzofuran-1(3H)-one (Chan & Scheidt, 2006). The annelated cyclohexane ring has a half-chair configuration. The ethylene unit in the tetramethylene-bridge is disordered over two sites (C14—C15A—C16A—C17 and C14—C15B—C16B—C17) with refined occupancies of 0.838 (4) and 0.162 (4).

As shown in Fig. 2, the crystal structure is characterized by two alternating layers, which consist of the isobenzofuran-1(3H)-one layer lying on the bc planes and the tetrahydro naphthalene layer, which exists between the bc planes.

Experimental

The title compound was prepared according to the modified method described by Schroeter (1921). A mixture of 2-(5,6,7,8-tetrahydronaphtho-2-yl)benzoic acid (2.01 g, 7.16 mmol) and zinc dust (2.00 g, 30.6 mmol) in 25% ammonia solution (30 ml) was refluxed for 4 h. The reaction mixture was cooled and conc. HCl (8 ml) was added. The resulting precipitate was filtered off, and washed with dichloromethane. The organic layer was separated, washed with brine, and dried over Na2SO4. After evaporation, column chromatography on silica gel (CH2Cl2) gave the compound (1.17 g, 62%) as a white solid. Colourless crystals suitable for X-ray analysis were obtained from a dichloromethane solution.

Refinement

All the H atoms were positioned geometrically and refined using a riding model with Caromatic—H = 0.94Å [Uiso(H) = 1.2Ueq(C)] and Cmethylene—H = 0.98Å [Uiso(H) = 1.2Ueq(C)]. The methylene carbon atoms (C15A, C15B, C16A, and C16B) and the associated hydrogen atoms are disordered over two sites (C14—C15A—C16A—C17 and C14—C15B—C16B—C17) with occupancies of 0.838 (4) and 0.162 (4). The values were determined by refining site occupancies. Three C—C distances (C14—C15B, C15B—C16B, and C16B—C17) of the disordered atoms (C15B and C16B) were restrained to 1.54 (1) Å.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. The minor occupied site of the disordered methylene-bridge chain is omitted for clarity.
Fig. 2.
The packing diagram of (I), viewed down the c axis. Hydrogen atoms are omitted for clarity.

Crystal data

C18H16O2F000 = 560
Mr = 264.31Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4161 reflections
a = 11.2950 (11) Åθ = 3.1–27.5º
b = 15.8251 (10) ŵ = 0.09 mm1
c = 7.8092 (10) ÅT = 223 K
β = 109.0970 (10)ºPlatelet, colourless
V = 1319.0 (2) Å30.5 × 0.5 × 0.03 mm
Z = 4

Data collection

Rigaku/MSC Mercury CCD area-detector diffractometer2955 independent reflections
Radiation source: rotating-anode X-ray tube2502 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.015
Detector resolution: 14.7059 pixels mm-1θmax = 27.5º
T = 223 Kθmin = 3.1º
[var phi] and ω scansh = −14→0
Absorption correction: numerical(NUMABS; Higashi, 1999)k = −20→20
Tmin = 0.980, Tmax = 0.995l = −9→10
5765 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.108  w = 1/[σ2(Fo2) + (0.1123P)2 + 0.367P] where P = (Fo2 + 2Fc2)/3
S = 1.1(Δ/σ)max = 0.001
2955 reflectionsΔρmax = 0.23 e Å3
200 parametersΔρmin = −0.16 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C11.02994 (10)0.24031 (7)0.24158 (14)0.0297 (2)
C20.88406 (10)0.15608 (7)0.31444 (13)0.0275 (2)
H20.88990.14810.44270.033*
C30.97929 (9)0.10068 (7)0.27234 (12)0.0253 (2)
C40.99036 (10)0.01332 (7)0.27188 (13)0.0298 (2)
H40.9325−0.02180.30090.036*
C51.08967 (11)−0.02030 (7)0.22709 (14)0.0333 (3)
H51.0999−0.07930.22740.04*
C61.17465 (11)0.03146 (8)0.18158 (14)0.0349 (3)
H61.2410.00690.15140.042*
C71.16291 (10)0.11850 (7)0.18020 (14)0.0314 (2)
H71.21930.15370.14810.038*
C81.06447 (10)0.15181 (7)0.22818 (12)0.0261 (2)
C90.71587 (10)0.15338 (7)0.00822 (13)0.0268 (2)
H90.77720.1683−0.04370.032*
C100.75057 (10)0.14339 (6)0.19540 (13)0.0254 (2)
C110.65959 (11)0.12144 (7)0.27084 (14)0.0309 (2)
H110.68110.11490.3970.037*
C120.53701 (11)0.10919 (8)0.16038 (14)0.0333 (3)
H120.47630.09390.21310.04*
C130.50144 (10)0.11891 (6)−0.02704 (13)0.0272 (2)
C140.36564 (10)0.10711 (8)−0.14102 (15)0.0368 (3)
H14A0.31660.1534−0.11480.044*
H14B0.33530.0543−0.10460.044*
C15A0.34138 (19)0.10439 (13)−0.3451 (2)0.0362 (5)0.838 (4)
H15A0.36380.0486−0.37960.043*0.838 (4)
H15B0.25220.1141−0.40990.043*0.838 (4)
C16A0.41910 (14)0.17205 (11)−0.39664 (18)0.0363 (5)0.838 (4)
H16A0.39920.2275−0.35730.044*0.838 (4)
H16B0.39880.1734−0.52860.044*0.838 (4)
C15B0.3475 (11)0.1453 (9)−0.3284 (11)0.070 (5)0.162 (4)
H15C0.26250.1325−0.40850.084*0.162 (4)
H15D0.35550.2068−0.31690.084*0.162 (4)
C16B0.4407 (7)0.1126 (8)−0.4145 (10)0.056 (3)0.162 (4)
H16C0.44750.0509−0.40590.068*0.162 (4)
H16D0.41680.1292−0.54220.068*0.162 (4)
C170.55921 (11)0.15332 (8)−0.30668 (14)0.0347 (3)
H17A0.58090.1019−0.35970.042*
H17B0.60840.2−0.33110.042*
C180.59290 (10)0.14175 (6)−0.10368 (13)0.0257 (2)
O10.92438 (7)0.24194 (5)0.29001 (10)0.0330 (2)
O21.07896 (8)0.30458 (5)0.21603 (11)0.0418 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0239 (5)0.0292 (6)0.0300 (5)−0.0028 (4)0.0004 (4)−0.0003 (4)
C20.0265 (6)0.0272 (5)0.0274 (5)−0.0017 (4)0.0067 (4)−0.0023 (4)
C30.0231 (5)0.0276 (5)0.0218 (4)0.0000 (4)0.0026 (4)0.0002 (3)
C40.0323 (6)0.0273 (5)0.0273 (5)−0.0015 (4)0.0062 (4)0.0024 (4)
C50.0372 (6)0.0272 (6)0.0317 (5)0.0053 (4)0.0063 (4)−0.0004 (4)
C60.0300 (6)0.0401 (6)0.0334 (5)0.0072 (5)0.0088 (4)−0.0026 (4)
C70.0249 (5)0.0389 (6)0.0293 (5)−0.0016 (4)0.0072 (4)0.0012 (4)
C80.0232 (5)0.0268 (5)0.0237 (4)−0.0011 (4)0.0014 (4)0.0004 (3)
C90.0247 (5)0.0297 (5)0.0284 (5)−0.0011 (4)0.0120 (4)−0.0014 (4)
C100.0237 (5)0.0247 (5)0.0278 (5)0.0014 (4)0.0083 (4)−0.0023 (4)
C110.0309 (6)0.0385 (6)0.0241 (5)−0.0007 (4)0.0103 (4)0.0015 (4)
C120.0281 (6)0.0440 (7)0.0315 (5)−0.0030 (5)0.0147 (4)0.0018 (4)
C130.0228 (5)0.0295 (5)0.0298 (5)0.0009 (4)0.0092 (4)−0.0003 (4)
C140.0240 (6)0.0509 (7)0.0349 (6)−0.0017 (5)0.0089 (4)−0.0013 (5)
C15A0.0275 (8)0.0474 (11)0.0288 (8)−0.0073 (8)0.0024 (6)−0.0018 (7)
C16A0.0345 (9)0.0412 (10)0.0286 (7)−0.0015 (7)0.0040 (6)0.0061 (6)
C15B0.020 (5)0.123 (13)0.054 (6)−0.001 (7)−0.007 (4)−0.044 (8)
C16B0.042 (5)0.098 (10)0.027 (4)0.012 (5)0.008 (3)−0.008 (4)
C170.0348 (6)0.0437 (7)0.0258 (5)−0.0052 (5)0.0103 (4)0.0010 (4)
C180.0262 (5)0.0261 (5)0.0256 (5)0.0008 (4)0.0099 (4)−0.0007 (4)
O10.0272 (4)0.0260 (4)0.0430 (4)−0.0011 (3)0.0077 (3)−0.0056 (3)
O20.0370 (5)0.0279 (4)0.0544 (5)−0.0074 (3)0.0066 (4)0.0031 (3)

Geometric parameters (Å, °)

C1—O21.2054 (13)C12—C131.3937 (14)
C1—O11.3639 (14)C12—H120.94
C1—C81.4668 (15)C13—C181.4002 (14)
C2—O11.4651 (13)C13—C141.5122 (15)
C2—C101.5037 (14)C14—C15A1.527 (2)
C2—C31.5050 (14)C14—C15B1.534 (9)
C2—H20.99C14—H14A0.98
C3—C81.3844 (14)C14—H14B0.98
C3—C41.3881 (15)C15A—C16A1.520 (2)
C4—C51.3858 (15)C15A—H15A0.98
C4—H40.94C15A—H15B0.98
C5—C61.3935 (17)C16A—C171.5357 (19)
C5—H50.94C16A—H16A0.98
C6—C71.3834 (16)C16A—H16B0.98
C6—H60.94C15B—C16B1.514 (9)
C7—C81.3882 (15)C15B—H15C0.98
C7—H70.94C15B—H15D0.98
C9—C181.3901 (15)C16B—C171.476 (7)
C9—C101.3930 (14)C16B—H16C0.98
C9—H90.94C16B—H16D0.98
C10—C111.3856 (14)C17—C181.5155 (14)
C11—C121.3846 (16)C17—H17A0.98
C11—H110.94C17—H17B0.98
O2—C1—O1121.36 (10)C13—C14—H14A108.6
O2—C1—C8130.29 (11)C15A—C14—H14A108.6
O1—C1—C8108.35 (9)C15B—C14—H14A89.8
O1—C2—C10109.57 (8)C13—C14—H14B108.6
O1—C2—C3103.71 (8)C15A—C14—H14B108.6
C10—C2—C3115.52 (8)C15B—C14—H14B131.5
O1—C2—H2109.3H14A—C14—H14B107.6
C10—C2—H2109.3C16A—C15A—C14109.54 (14)
C3—C2—H2109.3C16A—C15A—H15A109.8
C8—C3—C4120.72 (10)C14—C15A—H15A109.8
C8—C3—C2108.57 (9)C16A—C15A—H15B109.8
C4—C3—C2130.71 (10)C14—C15A—H15B109.8
C5—C4—C3117.65 (10)H15A—C15A—H15B108.2
C5—C4—H4121.2C15A—C16A—C17109.93 (13)
C3—C4—H4121.2C15A—C16A—H16A109.7
C4—C5—C6121.37 (10)C17—C16A—H16A109.7
C4—C5—H5119.3C15A—C16A—H16B109.7
C6—C5—H5119.3C17—C16A—H16B109.7
C7—C6—C5120.99 (10)H16A—C16A—H16B108.2
C7—C6—H6119.5C16B—C15B—C14113.2 (8)
C5—C6—H6119.5C16B—C15B—H15C108.9
C6—C7—C8117.33 (10)C14—C15B—H15C108.9
C6—C7—H7121.3C16B—C15B—H15D108.9
C8—C7—H7121.3C14—C15B—H15D108.9
C3—C8—C7121.91 (10)H15C—C15B—H15D107.7
C3—C8—C1108.52 (9)C17—C16B—C15B103.3 (8)
C7—C8—C1129.57 (10)C17—C16B—H16C111.1
C18—C9—C10121.66 (9)C15B—C16B—H16C111.1
C18—C9—H9119.2C17—C16B—H16D111.1
C10—C9—H9119.2C15B—C16B—H16D111.1
C11—C10—C9118.78 (9)H16C—C16B—H16D109.1
C11—C10—C2120.25 (9)C16B—C17—C18114.5 (4)
C9—C10—C2120.97 (9)C18—C17—C16A111.74 (10)
C12—C11—C10119.99 (9)C16B—C17—H17A72.7
C12—C11—H11120C18—C17—H17A109.3
C10—C11—H11120C16A—C17—H17A109.3
C11—C12—C13121.65 (10)C16B—C17—H17B133.2
C11—C12—H12119.2C18—C17—H17B109.3
C13—C12—H12119.2C16A—C17—H17B109.3
C12—C13—C18118.55 (9)H17A—C17—H17B107.9
C12—C13—C14119.53 (9)C9—C18—C13119.38 (9)
C18—C13—C14121.90 (9)C9—C18—C17119.92 (9)
C13—C14—C15A114.77 (11)C13—C18—C17120.69 (9)
C13—C14—C15B107.8 (5)C1—O1—C2110.84 (8)
O1—C2—C3—C8−0.12 (10)C11—C12—C13—C14−178.35 (11)
C10—C2—C3—C8119.79 (9)C12—C13—C14—C15A−170.05 (12)
O1—C2—C3—C4−179.84 (9)C18—C13—C14—C15A11.73 (17)
C10—C2—C3—C4−59.94 (14)C12—C13—C14—C15B164.3 (5)
C8—C3—C4—C50.44 (14)C18—C13—C14—C15B−13.9 (5)
C2—C3—C4—C5−179.87 (10)C13—C14—C15A—C16A−42.2 (2)
C3—C4—C5—C6−0.87 (15)C15B—C14—C15A—C16A36.6 (10)
C4—C5—C6—C70.23 (16)C14—C15A—C16A—C1763.7 (2)
C5—C6—C7—C80.84 (15)C13—C14—C15B—C16B52.2 (11)
C4—C3—C8—C70.66 (14)C15A—C14—C15B—C16B−58.4 (9)
C2—C3—C8—C7−179.10 (9)C14—C15B—C16B—C17−72.0 (13)
C4—C3—C8—C1−179.57 (8)C15B—C16B—C17—C1852.0 (9)
C2—C3—C8—C10.67 (10)C15B—C16B—C17—C16A−42.7 (6)
C6—C7—C8—C3−1.29 (14)C15A—C16A—C17—C16B48.9 (5)
C6—C7—C8—C1178.99 (10)C15A—C16A—C17—C18−53.52 (17)
O2—C1—C8—C3179.48 (11)C10—C9—C18—C13−0.41 (15)
O1—C1—C8—C3−1.02 (10)C10—C9—C18—C17179.96 (10)
O2—C1—C8—C7−0.77 (18)C12—C13—C18—C90.49 (15)
O1—C1—C8—C7178.73 (10)C14—C13—C18—C9178.72 (10)
C18—C9—C10—C11−0.10 (15)C12—C13—C18—C17−179.89 (10)
C18—C9—C10—C2179.91 (9)C14—C13—C18—C17−1.65 (16)
O1—C2—C10—C11−121.44 (10)C16B—C17—C18—C9160.3 (5)
C3—C2—C10—C11121.92 (11)C16A—C17—C18—C9−157.81 (11)
O1—C2—C10—C958.55 (12)C16B—C17—C18—C13−19.3 (5)
C3—C2—C10—C9−58.09 (13)C16A—C17—C18—C1322.56 (15)
C9—C10—C11—C120.51 (16)O2—C1—O1—C2−179.49 (9)
C2—C10—C11—C12−179.50 (10)C8—C1—O1—C20.95 (10)
C10—C11—C12—C13−0.44 (17)C10—C2—O1—C1−124.41 (9)
C11—C12—C13—C18−0.07 (17)C3—C2—O1—C1−0.53 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2111).

References

  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Chan, A. & Scheidt, K. A. (2006). J. Am. Chem. Soc.128, 4558–4559. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
  • Kalyani, V. & Vijayan, M. (1969). Acta Cryst. B25, 1281–1288.
  • Konosonoks, A., Wright, P. J., Tsao, M.-L., Pika, J., Novak, K., Mandel, S. M., Krause Bauer, J. A., Bohne, C. & Gudmundsdottir, A. D. (2005). J. Org. Chem.70, 2763–2770. [PubMed]
  • Rigaku/MSC (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Schroeter, G. (1921). Chem. Ber.54, 2242–2248.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vijayan, M., Chinnakali, K., Amaladass, P., Mohanakrishnan, A. K. & Fun, H.-K. (2006). Acta Cryst. E62, o1941–o1943.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography