PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1813.
Published online 2008 August 23. doi:  10.1107/S1600536808026639
PMCID: PMC2960539

(±)-trans-3-Oxo-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthrene-10a-carboxylic acid: catemeric hydrogen bonding in a δ-keto acid

Abstract

The title compound, C15H16O3, aggregates as hydrogen-bonded catemers progressing from each carboxyl to the ketone of a screw-related neighbor [O(...)O = 2.6675 (14) Å and O—H(...)O = 170°]. Two parallel centrosymmetrically related single-strand hydrogen-bonding helices proceed through the cell in the b-axis direction. The packing includes three inter­molecular C—H(...)O=C close contacts, involving both the ketone and the carboxyl group. The structure is isomorphous with that of the previously described Δ4 α,β-unsaturated ketone.

Related literature

For related literature, see: Allen et al. (1999 [triangle]); Borthwick (1980 [triangle]); Gavezzotti & Filippini (1994 [triangle]); Leiserowitz (1976 [triangle]); Miller et al. (1999 [triangle]); Steiner (1997 [triangle]); Thompson & McPherson (1977 [triangle]); Thompson & Shah (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1813-scheme1.jpg

Experimental

Crystal data

  • C15H16O3
  • M r = 244.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1813-efi1.jpg
  • a = 9.7172 (4) Å
  • b = 12.2735 (6) Å
  • c = 10.4867 (5) Å
  • β = 102.6764 (19)°
  • V = 1220.20 (10) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.74 mm−1
  • T = 100 (2) K
  • 0.41 × 0.38 × 0.36 mm

Data collection

  • Bruker SMART CCD APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.750, T max = 0.775
  • 7219 measured reflections
  • 2106 independent reflections
  • 2019 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.108
  • S = 1.05
  • 2106 reflections
  • 165 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026639/fl2217sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026639/fl2217Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HWT is grateful to Professor Gree Loober Spoog for helpful consultations. The authors acknowledge support by NSF-CRIF grant No. 0443538.

supplementary crystallographic information

Comment

In ketocarboxylic acids the bias toward centrosymmetric acid pairing (Leiserowitz, 1976; Gavezzotti & Filippini, 1994; Allen et al., 1999) may be suppressed when molecular inflexibility diminishes the repertoire of conformational options. Keto acids with few fully rotatable bonds thus display an increased tendency to form acid-to-ketone H-bonding chains. In this context, we describe the title compound (I), which aggregates in the less common catemer mode.

Fig. 1 shows the asymmetric unit for (I) with its numbering. The sole option for full bond rotation involves the carboxyl group, which is turned so that its carbonyl lies over the ring system, with a C4A—C10A—C11—O2 torsion angle of 39.16 (17)°. Within the asymmetric unit, the dihedral angle for ketone (C2—C3—C4—O1) versus carboxyl (C10A—C11—O2—O3) is 86.06 (6)°. Because (I) is not dimeric, averaging of C—O bond lengths and C—C—O angles by disorder is precluded, and these values [1.2121 (17) & 1.3232 (17) Å] resemble ones typical for highly ordered carboxyls (Borthwick, 1980).

Fig. 2 illustrates the packing. The carboxyl-to-ketone H bonds proceed among molecules screw-related in b, generating two parallel single-strand helical catemers for each cell. These chains are centrosymmetrically related and thus counter-directional. For the ketone and carboxyl groups involved in each intermolecular H bond (Table 1), the C2—C3—C4—O1 versus C10A'-C11'-O2'-O3' [symmetry = 0.5 - x,-1/2 + y,0.5 - z] dihedral angle is 69.01 (6)°.

We characterize the geometry of H bonding to carbonyls using a combination of the H···O=C angle and the H···O=C—C torsion angle. These describe the approach of the H atom to the O in terms of its deviation from, respectively, C=O axiality and planarity with the carbonyl. In (I) these angles are 117° for H···O=C and -6.5° for H···O=C—C, extremely close to the "ideal" angles of 120 and 0°.

Within the 2.6 Å range we survey (Steiner, 1997), three intermolecular C—H···O=C close contacts were found in the packing, involving both the ketone and the carboxyl group. (Table 1).

Compound (I) is derived from the Δ4 isoskeletal unsaturated keto acid whose structure we have previously reported (Miller et al., 1999), and the molecular shapes of these two compounds are so similar that (I) was found to be isomorphous with the prior material.

Experimental

1-Tetralone was carbomethoxylated and then subjected to Robinson annulation as described by Thompson & McPherson (1977). The resulting unsaturated keto ester was hydrogenated over a Pd/C catalyst, after which Jones oxidation was employed to correct for overreduction. Mild saponification, modeled on that described by Thompson & Shah (1983), provided (I), which was sublimed and crystallized from diethyl ether to give the crystal used, m.p. 460 K. The solid-state (KBr) infrared spectrum of (I) has C=O absorptions at 1716 & 1685 cm-1. This peak separation is typical of the H-bonding shifts in catemers, due to, respectively, its removal from the acid C=O and its addition to the ketone. In CHCl3 solution, where dimers predominate, these peaks coalesce to a single absorption at 1707 cm-1.

Refinement

All H atoms for (I) were found in electron density difference maps. The O—H was constrained to an idealized position with its distance fixed at 0.84 Å and Uiso(H) = 1.5Ueq(O). The aromatic, methylene & methine Hs were placed in geometrically idealized positions and constrained to ride on their parent C atoms with C—H distances of 0.95, 0.99 & 1.00 Å, respectively, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of (I), with its numbering. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram for (I), with extracellular molecules, illustrating a counter-directional pair of parallel H-bonding chains. For clarity, all C-bound H atoms are omitted. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C15H16O3F000 = 520
Mr = 244.28Dx = 1.330 Mg m3
Monoclinic, P21/nMelting point: 460 K
Hall symbol: -P 2ynCu Kα radiation λ = 1.54178 Å
a = 9.7172 (4) ÅCell parameters from 4354 reflections
b = 12.2735 (6) Åθ = 4.3–67.3º
c = 10.4867 (5) ŵ = 0.74 mm1
β = 102.6764 (19)ºT = 100 (2) K
V = 1220.20 (10) Å3Block, colourless
Z = 40.41 × 0.38 × 0.36 mm

Data collection

Bruker SMART CCD APEXII area-detector diffractometer2106 independent reflections
Radiation source: fine-focus sealed tube2019 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
T = 100(2) Kθmax = 67.8º
[var phi] and ω scansθmin = 5.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 2001)h = −11→11
Tmin = 0.750, Tmax = 0.775k = −14→11
7219 measured reflectionsl = −12→12

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039  w = 1/[σ2(Fo2) + (0.061P)2 + 0.4428P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.25 e Å3
2106 reflectionsΔρmin = −0.20 e Å3
165 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (8)
Secondary atom site location: difference Fourier map

Special details

Experimental. crystal mounted on cryoloop using Paratone-N
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.16954 (13)0.53956 (9)0.02162 (9)0.0406 (3)
C1−0.01276 (13)0.72351 (11)0.19416 (12)0.0252 (3)
H1A−0.09680.67570.17410.030*
H1B−0.04610.79990.18450.030*
O20.29511 (10)0.78231 (9)0.34146 (10)0.0350 (3)
C20.07805 (14)0.70150 (11)0.09446 (12)0.0265 (3)
H2A0.01720.70360.00540.032*
H2B0.14900.76030.10050.032*
O30.14561 (11)0.87586 (8)0.43269 (10)0.0356 (3)
H30.21080.92220.44360.053*
C30.15250 (14)0.59394 (11)0.11443 (13)0.0267 (3)
C4B0.19751 (13)0.56160 (11)0.49180 (12)0.0238 (3)
C40.21490 (14)0.55868 (12)0.25238 (13)0.0278 (3)
H4A0.30900.59270.28090.033*
H4B0.22860.47870.25340.033*
C4A0.12567 (13)0.58788 (11)0.35068 (12)0.0230 (3)
H4AA0.04170.53870.32950.028*
C50.31064 (14)0.48895 (11)0.52183 (13)0.0268 (3)
H5A0.34800.45890.45310.032*
C60.36977 (14)0.45965 (12)0.65045 (14)0.0305 (3)
H6A0.44600.40950.66890.037*
C70.31676 (15)0.50411 (12)0.75139 (13)0.0322 (4)
H7A0.35590.48410.83940.039*
C8A0.14555 (14)0.60769 (11)0.59434 (13)0.0255 (3)
C80.20659 (15)0.57772 (12)0.72309 (13)0.0297 (3)
H8A0.17150.60870.79270.036*
C90.02840 (15)0.69172 (11)0.57102 (13)0.0287 (3)
H9A0.06700.76150.61080.034*
H9B−0.04550.66780.61650.034*
C10A0.06525 (13)0.70445 (10)0.33777 (12)0.0226 (3)
C10−0.04018 (14)0.71177 (11)0.42685 (13)0.0266 (3)
H10A−0.08410.78490.41770.032*
H10B−0.11590.65740.39800.032*
C110.18214 (14)0.78966 (11)0.37191 (12)0.0250 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0641 (7)0.0364 (6)0.0228 (5)0.0208 (5)0.0127 (5)0.0039 (4)
C10.0259 (6)0.0238 (7)0.0242 (7)0.0037 (5)0.0017 (5)0.0005 (5)
O20.0286 (5)0.0341 (6)0.0421 (6)−0.0062 (4)0.0075 (4)−0.0009 (4)
C20.0313 (7)0.0254 (7)0.0211 (6)0.0038 (5)0.0021 (5)0.0029 (5)
O30.0500 (6)0.0266 (6)0.0339 (6)−0.0128 (4)0.0173 (5)−0.0087 (4)
C30.0303 (7)0.0273 (7)0.0229 (7)0.0029 (5)0.0063 (5)0.0024 (5)
C4B0.0268 (6)0.0220 (7)0.0219 (6)−0.0057 (5)0.0039 (5)0.0016 (5)
C40.0330 (7)0.0274 (7)0.0219 (7)0.0085 (5)0.0037 (5)0.0019 (5)
C4A0.0255 (6)0.0220 (7)0.0207 (6)−0.0008 (5)0.0036 (5)0.0008 (5)
C50.0271 (7)0.0282 (8)0.0242 (7)−0.0036 (5)0.0038 (5)0.0034 (5)
C60.0268 (7)0.0317 (8)0.0301 (7)−0.0049 (6)−0.0002 (5)0.0086 (6)
C70.0332 (7)0.0381 (8)0.0221 (7)−0.0130 (6)−0.0007 (5)0.0071 (6)
C8A0.0288 (7)0.0238 (7)0.0240 (7)−0.0089 (5)0.0056 (5)0.0004 (5)
C80.0352 (7)0.0316 (8)0.0224 (7)−0.0125 (6)0.0068 (5)−0.0009 (5)
C90.0362 (7)0.0259 (7)0.0267 (7)−0.0042 (6)0.0129 (6)−0.0015 (5)
C10A0.0244 (6)0.0214 (7)0.0214 (6)−0.0005 (5)0.0035 (5)0.0000 (5)
C100.0268 (6)0.0250 (7)0.0288 (7)−0.0013 (5)0.0078 (5)−0.0015 (5)
C110.0309 (7)0.0243 (7)0.0185 (6)−0.0023 (5)0.0025 (5)0.0030 (5)

Geometric parameters (Å, °)

O1—C31.2210 (17)C4A—C10A1.5411 (18)
C1—C21.5328 (18)C4A—H4AA1.0000
C1—C10A1.5481 (17)C5—C61.3923 (19)
C1—H1A0.9900C5—H5A0.9500
C1—H1B0.9900C6—C71.387 (2)
O2—C111.2121 (17)C6—H6A0.9500
C2—C31.4979 (19)C7—C81.382 (2)
C2—H2A0.9900C7—H7A0.9500
C2—H2B0.9900C8A—C81.3996 (19)
O3—C111.3232 (17)C8A—C91.516 (2)
O3—H30.8400C8—H8A0.9500
C3—C41.5043 (18)C9—C101.5324 (18)
C4B—C51.397 (2)C9—H9A0.9900
C4B—C8A1.4034 (19)C9—H9B0.9900
C4B—C4A1.5258 (17)C10A—C111.5276 (18)
C4—C4A1.5280 (18)C10A—C101.5331 (17)
C4—H4A0.9900C10—H10A0.9900
C4—H4B0.9900C10—H10B0.9900
C2—C1—C10A113.87 (10)C7—C6—C5119.64 (13)
C2—C1—H1A108.8C7—C6—H6A120.2
C10A—C1—H1A108.8C5—C6—H6A120.2
C2—C1—H1B108.8C8—C7—C6119.55 (12)
C10A—C1—H1B108.8C8—C7—H7A120.2
H1A—C1—H1B107.7C6—C7—H7A120.2
C3—C2—C1113.12 (11)C8—C8A—C4B119.06 (13)
C3—C2—H2A109.0C8—C8A—C9118.61 (12)
C1—C2—H2A109.0C4B—C8A—C9122.31 (12)
C3—C2—H2B109.0C7—C8—C8A121.55 (13)
C1—C2—H2B109.0C7—C8—H8A119.2
H2A—C2—H2B107.8C8A—C8—H8A119.2
C11—O3—H3109.5C8A—C9—C10114.65 (11)
O1—C3—C2121.08 (12)C8A—C9—H9A108.6
O1—C3—C4120.85 (12)C10—C9—H9A108.6
C2—C3—C4117.93 (11)C8A—C9—H9B108.6
C5—C4B—C8A118.84 (12)C10—C9—H9B108.6
C5—C4B—C4A121.57 (12)H9A—C9—H9B107.6
C8A—C4B—C4A119.54 (12)C11—C10A—C10112.27 (10)
C3—C4—C4A114.37 (11)C11—C10A—C4A111.45 (10)
C3—C4—H4A108.7C10—C10A—C4A107.07 (10)
C4A—C4—H4A108.7C11—C10A—C1107.74 (10)
C3—C4—H4B108.7C10—C10A—C1109.50 (10)
C4A—C4—H4B108.7C4A—C10A—C1108.76 (10)
H4A—C4—H4B107.6C9—C10—C10A112.81 (11)
C4B—C4A—C4113.46 (11)C9—C10—H10A109.0
C4B—C4A—C10A111.46 (11)C10A—C10—H10A109.0
C4—C4A—C10A114.84 (11)C9—C10—H10B109.0
C4B—C4A—H4AA105.4C10A—C10—H10B109.0
C4—C4A—H4AA105.4H10A—C10—H10B107.8
C10A—C4A—H4AA105.4O2—C11—O3122.73 (12)
C6—C5—C4B121.35 (13)O2—C11—C10A123.85 (12)
C6—C5—H5A119.3O3—C11—C10A113.33 (11)
C4B—C5—H5A119.3
C10A—C1—C2—C349.48 (16)C8—C8A—C9—C10−174.95 (11)
C1—C2—C3—O1143.89 (14)C4B—C8A—C9—C107.00 (18)
C1—C2—C3—C4−40.45 (16)C4B—C4A—C10A—C1164.36 (13)
O1—C3—C4—C4A−146.29 (14)C4—C4A—C10A—C11−66.43 (14)
C2—C3—C4—C4A38.04 (17)C4B—C4A—C10A—C10−58.77 (13)
C5—C4B—C4A—C4−18.50 (18)C4—C4A—C10A—C10170.44 (11)
C8A—C4B—C4A—C4164.19 (12)C4B—C4A—C10A—C1−177.00 (10)
C5—C4B—C4A—C10A−150.00 (12)C4—C4A—C10A—C152.20 (14)
C8A—C4B—C4A—C10A32.69 (16)C2—C1—C10A—C1166.13 (14)
C3—C4—C4A—C4B−174.25 (11)C2—C1—C10A—C10−171.50 (11)
C3—C4—C4A—C10A−44.43 (16)C2—C1—C10A—C4A−54.81 (14)
C8A—C4B—C5—C61.67 (19)C8A—C9—C10—C10A−35.51 (16)
C4A—C4B—C5—C6−175.66 (12)C11—C10A—C10—C9−61.41 (14)
C4B—C5—C6—C7−0.7 (2)C4A—C10A—C10—C961.21 (14)
C5—C6—C7—C8−0.6 (2)C1—C10A—C10—C9178.96 (11)
C5—C4B—C8A—C8−1.36 (19)C10—C10A—C11—O2159.27 (12)
C4A—C4B—C8A—C8176.02 (11)C4A—C10A—C11—O239.16 (17)
C5—C4B—C8A—C9176.67 (12)C1—C10A—C11—O2−80.08 (15)
C4A—C4B—C8A—C9−5.94 (18)C10—C10A—C11—O3−24.00 (15)
C6—C7—C8—C8A0.8 (2)C4A—C10A—C11—O3−144.12 (11)
C4B—C8A—C8—C70.13 (19)C1—C10A—C11—O396.65 (12)
C9—C8A—C8—C7−177.98 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.842.6675 (14)170
C2—H2A···O2ii0.992.453.3817 (16)156
C4—H4B···O2iii0.992.603.5273 (18)156
C8—H8A···O1iv0.952.553.2625 (17)132

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x−1/2, −y+3/2, z−1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2217).

References

  • Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem.23, 25–34.
  • Borthwick, P. W. (1980). Acta Cryst. B36, 628–632.
  • Bruker (2005). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gavezzotti, A. & Filippini, G. (1994). J. Phys. Chem.98, 4831–4837.
  • Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.
  • Miller, A. J., Brunskill, A. P. J., Lalancette, R. A. & Thompson, H. W. (1999). Acta Cryst. C55, 563–566.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steiner, T. (1997). Chem. Commun. pp. 727–734.
  • Thompson, H. W. & McPherson, E. (1977). J. Org. Chem.42, 3350–3353.
  • Thompson, H. W. & Shah, N. V. (1983). J. Org. Chem.48, 1325–1328.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography