PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1715.
Published online 2008 August 6. doi:  10.1107/S1600536808024719
PMCID: PMC2960537

2-{3-Cyano-5,5-dimethyl-4-[4-(pyrrol­idin-1-yl)buta-1,3-dien­yl]-2,5-dihydro­furan-2-yl­idene}malononitrile dichloro­methane solvate

Abstract

The structure of the title compound, C18H18N4O·CH2Cl2, was solved using data collected from a multiple crystal (note high R factors). The crystal structure is dominated by two bifurcated attractive C—H(...)N(cyano) inter­actions.

Related literature

For the synthesis, see Kay et al. (2004 [triangle]). For background, see Gainsford et al. (2007 [triangle], 2008a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1715-scheme1.jpg

Experimental

Crystal data

  • C18H18N4O·CH2Cl2
  • M r = 391.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1715-efi1.jpg
  • a = 6.8755 (8) Å
  • b = 16.8913 (17) Å
  • c = 16.6677 (18) Å
  • β = 93.482 (8)°
  • V = 1932.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 120 (2) K
  • 0.30 × 0.15 × 0.13 mm

Data collection

  • Bruker–Nonius APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.570, T max = 0.955
  • 4280 measured reflections
  • 4280 independent reflections
  • 2517 reflections with I > 2σ(I)
  • R int = 0.099

Refinement

  • R[F 2 > 2σ(F 2)] = 0.095
  • wR(F 2) = 0.270
  • S = 0.99
  • 4280 reflections
  • 237 parameters
  • H-atom parameters constrained
  • Δρmax = 1.36 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: RLATT (Bruker, 2004 [triangle]), SAINT (Bruker, 2005 [triangle]) and SADABS (Sheldrick, 2003 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024719/lh2664sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024719/lh2664Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr J. Wikaira of the University of Canterbury, New Zealand, for her assistance in the data collection.

supplementary crystallographic information

Comment

We have previously reported on the synthesis of a number of high figure of merit chromophores for nonlinear optics (Kay et al., 2004), and the X-ray crystallographic and structural properties of crucial dye precursors used (Gainsford et al., 2007, 2008a,b). A closely related compound 2-[3-Cyano-5,5-dimethyl-4-(6-pyrrolidin-1-yl-hexa -1,3,5-trienyl)-5H-furan-2-ylidene]-malononitrile will be reported shortly (Gainsford et al., 2008c).

In the crystal structure, the molecules (Fig. 1) are bound into planar dimer units via a polyene C–H and pyrollidine C–H bifurcated interaction with one cyano nitrogen atom (N1, Table 1). Other very weak intermolecular interactions providing inter-plane or solvent links, such as the one between the dichloromethane H19A and N1 (2.70 Å), are consistent with the difficulty found in obtaining a good single-crystal of this compound.

Experimental

To a solution of 5.8 mmole of {4-(4-Acetanilido-trans-1,3-butadienyl) -3-cyano-5,5-dimethyl-2(5H)-furanylidene}propanedinitrile (Compound 11b, Kay et al., 2004) in 30 ml of ethanol was added an equimolar quantity of pyrrolidine. The solution was refluxed 1 h, cooled and the product collected by filtration and washed with ethanol. λmax 530 nm (pyridine); 530 nm (DMF) log10ε 5.22. Final crystallization was from a 1:1 dichloromethane/ ethyl acetate mixture.

Refinement

Diffraction data was extracted from the major of multiple intersecting lattices using RLATT (Bruker, 2004). The structure was solved by direct methods but refinement halted at R 0.20 for 3731 data with I>2σ(I). Inspection of data showed a large number with Fo>>Fc indicating coincidental contributions from the other contributing lattice(s). A total of 943 reflections which met the two criteria (1) I(obs)/I(calc) > 1.50 and (2) (I(obs)-I(calc)) > 2σ(I(obs)) were then excluded from the dataset. The conventional R for these rejected data was 0.47. The ratio criteria (1) was varied down to values of 1.05: although the agreement factors converged at around a ratio of 1.2 (R 0.078, for 2252 I>2σ(I) data) no signifcant changes occurred in final su values or parameters compared with the larger dataset. On the basis that another analysis of the data would be possible if the larger dataset was presented, the refinement was continued with the (ratio 1.5) 4280 independent remaining data within the limit of 29° theta. All methyl and tertiary H atoms were refined with Uiso 1.5 & 1.2 times respectively that of the Ueq of their parent atom.

Figures

Fig. 1.
Molecular structure of the asymmetic unit (Farrugia, 1997); displacement ellipsoids are shown at the 50% probability level.

Crystal data

C18H18N4O·CH2Cl2F000 = 816
Mr = 391.29Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5595 reflections
a = 6.8755 (8) Åθ = 2.4–29.2º
b = 16.8913 (17) ŵ = 0.35 mm1
c = 16.6677 (18) ÅT = 120 (2) K
β = 93.482 (8)ºBlock, red
V = 1932.1 (4) Å30.30 × 0.15 × 0.13 mm
Z = 4

Data collection

Bruker–Nonius APEXII CCD area-detector diffractometer4280 independent reflections
Radiation source: fine-focus sealed tube2517 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.099
Detector resolution: 8.192 pixels mm-1θmax = 29.0º
T = 120(2) Kθmin = 2.7º
[var phi] and ω scansh = −9→9
Absorption correction: multi-scan(Blessing, 1995)k = 0→23
Tmin = 0.570, Tmax = 0.955l = 0→22
4280 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.095H-atom parameters constrained
wR(F2) = 0.270  w = 1/[σ2(Fo2) + (0.1824P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4280 reflectionsΔρmax = 1.36 e Å3
237 parametersΔρmin = −0.47 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. There were 36108 reflections measured in the data collection (43242 of which 7061 were rejected to 2theta 58 degrees & 73 were systematic absence violations)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Four low theta angle reflections affected by the backstop were omitted.Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.2744 (2)0.45770 (7)0.31788 (7)0.0405 (4)
Cl20.2711 (3)0.62862 (7)0.30173 (9)0.0578 (5)
O10.7615 (4)0.90197 (14)0.42000 (15)0.0176 (6)
N10.7450 (8)1.0058 (2)0.6850 (2)0.0461 (13)
N20.7371 (6)1.1047 (2)0.4400 (2)0.0308 (9)
N30.8028 (7)0.8020 (2)0.6872 (2)0.0382 (10)
N40.7736 (5)0.41968 (17)0.40006 (18)0.0175 (7)
C10.7496 (7)0.9959 (2)0.6163 (3)0.0250 (9)
C20.7542 (6)0.9836 (2)0.5329 (2)0.0187 (8)
C30.7462 (6)1.0505 (2)0.4810 (2)0.0218 (8)
C40.7730 (5)0.7750 (2)0.4757 (2)0.0149 (7)
C50.7705 (6)0.8175 (2)0.3964 (2)0.0160 (7)
C60.7637 (5)0.9082 (2)0.5002 (2)0.0148 (7)
C70.7736 (6)0.8325 (2)0.5364 (2)0.0156 (7)
C80.9567 (6)0.8083 (2)0.3533 (2)0.0234 (8)
H8A0.96040.84820.31070.035*
H8B0.96110.75530.32950.035*
H8C1.06910.81540.39160.035*
C90.5876 (7)0.8032 (2)0.3437 (2)0.0248 (9)
H9A0.47330.81020.37540.037*
H9B0.58910.74920.32240.037*
H9C0.58150.84100.29900.037*
C100.7885 (6)0.8171 (2)0.6203 (2)0.0226 (8)
C110.7752 (6)0.6928 (2)0.4885 (2)0.0186 (8)
H110.77240.67560.54270.022*
C120.7811 (6)0.6338 (2)0.4301 (2)0.0194 (8)
H120.78960.64920.37560.023*
C130.7752 (6)0.5539 (2)0.4481 (2)0.0189 (8)
H130.76440.53770.50220.023*
C140.7848 (6)0.4965 (2)0.3880 (2)0.0174 (7)
H140.80060.51430.33470.021*
C150.7243 (6)0.3835 (2)0.4769 (2)0.0187 (8)
H15A0.59820.40370.49400.022*
H15B0.82680.39440.51980.022*
C160.7121 (6)0.2948 (2)0.4578 (2)0.0179 (8)
H16A0.83810.26820.47160.021*
H16B0.60910.26900.48740.021*
C170.6631 (7)0.2927 (2)0.3685 (3)0.0273 (10)
H17A0.52220.30170.35620.033*
H17B0.70030.24130.34540.033*
C180.7825 (7)0.3595 (2)0.3367 (2)0.0243 (9)
H18A0.91840.34260.32980.029*
H18B0.72450.37930.28470.029*
C190.2652 (9)0.5381 (3)0.2501 (3)0.0406 (12)
H19A0.37740.53520.21570.049*
H19B0.14420.53490.21490.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0591 (9)0.0256 (6)0.0371 (7)0.0013 (5)0.0050 (5)0.0016 (5)
Cl20.1031 (14)0.0237 (6)0.0465 (8)−0.0009 (7)0.0047 (8)0.0022 (5)
O10.0335 (16)0.0064 (11)0.0131 (12)0.0004 (10)0.0044 (10)0.0004 (9)
N10.091 (4)0.024 (2)0.023 (2)−0.006 (2)0.009 (2)−0.0102 (16)
N20.047 (2)0.0151 (16)0.030 (2)−0.0001 (16)0.0008 (16)0.0014 (15)
N30.063 (3)0.028 (2)0.023 (2)−0.005 (2)−0.0010 (18)0.0067 (16)
N40.0282 (18)0.0089 (14)0.0157 (15)−0.0017 (12)0.0042 (12)0.0002 (11)
C10.041 (3)0.0099 (17)0.024 (2)−0.0014 (16)0.0028 (18)−0.0020 (14)
C20.028 (2)0.0070 (15)0.0210 (19)−0.0003 (14)0.0015 (15)−0.0024 (13)
C30.030 (2)0.0104 (17)0.025 (2)−0.0013 (14)0.0018 (16)−0.0033 (14)
C40.0151 (18)0.0083 (15)0.0213 (18)−0.0007 (12)0.0004 (13)−0.0016 (13)
C50.024 (2)0.0063 (15)0.0175 (17)−0.0030 (13)0.0010 (14)−0.0038 (12)
C60.0200 (18)0.0115 (16)0.0129 (16)0.0021 (13)−0.0007 (12)−0.0012 (12)
C70.0216 (19)0.0112 (15)0.0141 (16)−0.0020 (13)0.0009 (13)0.0010 (13)
C80.033 (2)0.0152 (17)0.0230 (19)−0.0004 (16)0.0060 (16)0.0006 (15)
C90.042 (3)0.0128 (17)0.0189 (19)−0.0034 (16)−0.0066 (16)−0.0003 (14)
C100.031 (2)0.0120 (17)0.024 (2)−0.0043 (15)−0.0023 (16)−0.0018 (14)
C110.023 (2)0.0105 (16)0.0226 (18)−0.0010 (14)0.0026 (14)0.0036 (14)
C120.024 (2)0.0100 (16)0.0238 (19)−0.0005 (14)0.0004 (15)−0.0002 (14)
C130.028 (2)0.0072 (15)0.0219 (19)−0.0015 (13)0.0034 (15)−0.0007 (13)
C140.0207 (19)0.0081 (16)0.0233 (19)0.0021 (13)0.0020 (14)0.0019 (13)
C150.026 (2)0.0129 (17)0.0173 (18)−0.0016 (14)0.0023 (14)0.0008 (13)
C160.0220 (19)0.0093 (16)0.0221 (18)0.0018 (13)−0.0011 (14)0.0022 (13)
C170.040 (3)0.0142 (18)0.027 (2)−0.0056 (17)−0.0036 (18)−0.0025 (15)
C180.045 (3)0.0084 (16)0.0198 (19)0.0029 (16)0.0033 (16)−0.0041 (14)
C190.064 (4)0.036 (3)0.022 (2)−0.001 (2)0.003 (2)0.0043 (18)

Geometric parameters (Å, °)

Cl1—C191.766 (5)C9—H9A0.9800
Cl2—C191.753 (5)C9—H9B0.9800
O1—C61.341 (4)C9—H9C0.9800
O1—C51.482 (4)C11—C121.397 (5)
N1—C11.160 (6)C11—H110.9500
N2—C31.141 (5)C12—C131.384 (5)
N3—C101.142 (5)C12—H120.9500
N4—C141.317 (4)C13—C141.397 (5)
N4—C181.471 (5)C13—H130.9500
N4—C151.477 (5)C14—H140.9500
C1—C21.408 (5)C15—C161.533 (5)
C2—C61.388 (5)C15—H15A0.9900
C2—C31.423 (5)C15—H15B0.9900
C4—C71.402 (5)C16—C171.505 (5)
C4—C111.405 (5)C16—H16A0.9900
C4—C51.503 (5)C16—H16B0.9900
C5—C91.510 (5)C17—C181.510 (6)
C5—C81.514 (6)C17—H17A0.9900
C6—C71.412 (5)C17—H17B0.9900
C7—C101.421 (5)C18—H18A0.9900
C8—H8A0.9800C18—H18B0.9900
C8—H8B0.9800C19—H19A0.9900
C8—H8C0.9800C19—H19B0.9900
C6—O1—C5110.0 (3)C13—C12—C11122.9 (4)
C14—N4—C18124.5 (3)C13—C12—H12118.6
C14—N4—C15124.0 (3)C11—C12—H12118.6
C18—N4—C15111.0 (3)C12—C13—C14121.2 (4)
N1—C1—C2179.6 (5)C12—C13—H13119.4
C6—C2—C1121.8 (3)C14—C13—H13119.4
C6—C2—C3119.5 (3)N4—C14—C13124.7 (4)
C1—C2—C3118.7 (3)N4—C14—H14117.7
N2—C3—C2178.8 (5)C13—C14—H14117.7
C7—C4—C11125.2 (3)N4—C15—C16103.7 (3)
C7—C4—C5107.6 (3)N4—C15—H15A111.0
C11—C4—C5127.2 (3)C16—C15—H15A111.0
O1—C5—C4103.0 (3)N4—C15—H15B111.0
O1—C5—C9105.2 (3)C16—C15—H15B111.0
C4—C5—C9113.6 (3)H15A—C15—H15B109.0
O1—C5—C8106.0 (3)C17—C16—C15103.6 (3)
C4—C5—C8113.8 (3)C17—C16—H16A111.0
C9—C5—C8113.9 (3)C15—C16—H16A111.0
O1—C6—C2117.7 (3)C17—C16—H16B111.0
O1—C6—C7110.6 (3)C15—C16—H16B111.0
C2—C6—C7131.7 (3)H16A—C16—H16B109.0
C4—C7—C6108.7 (3)C16—C17—C18103.7 (3)
C4—C7—C10125.4 (3)C16—C17—H17A111.0
C6—C7—C10125.8 (3)C18—C17—H17A111.0
C5—C8—H8A109.5C16—C17—H17B111.0
C5—C8—H8B109.5C18—C17—H17B111.0
H8A—C8—H8B109.5H17A—C17—H17B109.0
C5—C8—H8C109.5N4—C18—C17102.5 (3)
H8A—C8—H8C109.5N4—C18—H18A111.3
H8B—C8—H8C109.5C17—C18—H18A111.3
C5—C9—H9A109.5N4—C18—H18B111.3
C5—C9—H9B109.5C17—C18—H18B111.3
H9A—C9—H9B109.5H18A—C18—H18B109.2
C5—C9—H9C109.5Cl2—C19—Cl1111.0 (3)
H9A—C9—H9C109.5Cl2—C19—H19A109.4
H9B—C9—H9C109.5Cl1—C19—H19A109.4
N3—C10—C7177.6 (4)Cl2—C19—H19B109.4
C12—C11—C4126.9 (4)Cl1—C19—H19B109.4
C12—C11—H11116.6H19A—C19—H19B108.0
C4—C11—H11116.6
C6—O1—C5—C41.4 (4)O1—C6—C7—C4−1.5 (4)
C6—O1—C5—C9120.7 (3)C2—C6—C7—C4177.8 (4)
C6—O1—C5—C8−118.4 (3)O1—C6—C7—C10176.5 (4)
C7—C4—C5—O1−2.3 (4)C2—C6—C7—C10−4.2 (7)
C11—C4—C5—O1178.0 (4)C7—C4—C11—C12−177.7 (4)
C7—C4—C5—C9−115.5 (3)C5—C4—C11—C122.0 (6)
C11—C4—C5—C964.8 (5)C4—C11—C12—C13−177.4 (4)
C7—C4—C5—C8112.0 (3)C11—C12—C13—C14−178.9 (4)
C11—C4—C5—C8−67.8 (5)C18—N4—C14—C13179.6 (4)
C5—O1—C6—C2−179.4 (3)C15—N4—C14—C138.1 (6)
C5—O1—C6—C70.0 (4)C12—C13—C14—N4−177.6 (4)
C1—C2—C6—O1178.0 (4)C14—N4—C15—C16175.1 (4)
C3—C2—C6—O1−1.1 (6)C18—N4—C15—C162.5 (4)
C1—C2—C6—C7−1.2 (7)N4—C15—C16—C17−25.4 (4)
C3—C2—C6—C7179.7 (4)C15—C16—C17—C1838.8 (4)
C11—C4—C7—C6−177.9 (4)C14—N4—C18—C17−151.3 (4)
C5—C4—C7—C62.3 (4)C15—N4—C18—C1721.1 (4)
C11—C4—C7—C104.1 (6)C16—C17—C18—N4−36.7 (4)
C5—C4—C7—C10−175.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14···N1i0.952.523.378 (5)150
C18—H18B···N1i0.992.563.400 (5)142

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2664).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruker (2004). RLATT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst 30, 565.
  • Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633–o637. [PubMed]
  • Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008a). Acta Cryst. C64, o195-o198. [PubMed]
  • Gainsford, G. J., Bhuiyan, M. D. H., Kay, A. J. & Spek, A. L. (2008b). Acta Cryst. E64, o503. [PMC free article] [PubMed]
  • Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008c). In preparation.
  • Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem.14, 1321–1330.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography