PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1678.
Published online 2008 August 6. doi:  10.1107/S1600536808024355
PMCID: PMC2960536

2,2′-Dichloro-1,1′-[(butane-1,4-diyldi­oxy)bis­(nitrilo­methyl­idyne)]dibenzene

Abstract

The mol­ecule of the title compound, C18H18Cl2N2O2, lies across a crystallographic inversion centre and adopts an E configuration with respect to the azomethine C=N bond. The imino group is coplanar with the aromatic ring. Within the mol­ecule, the planar units are parallel, but extend in opposite directions from the dimethyl­ene bridge. In the crystal structure, the title compound exhibits a layer packing structure via weak π–π stacking inter­actions [inter­molecular plane-to-plane distances between adjacent aromatic rings are 3.461 (3) Å]. Mol­ecules in each layer are linked by inter­molecular C—H(...)O hydrogen-bonding inter­actions.

Related literature

For related literature, see: Collison & Fenton (1996 [triangle]); Dong, He et al. (2007 [triangle]); Dong, Duan et al. (2007 [triangle]); Dong et al. (2008 [triangle]); Liu et al. (2008 [triangle]); Lu et al. (2006 [triangle]); Mandal et al. (1996 [triangle]); Shi et al. (2007 [triangle]); Yu et al. (2007 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1678-scheme1.jpg

Experimental

Crystal data

  • C18H18Cl2N2O2
  • M r = 365.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1678-efi1.jpg
  • a = 4.5296 (5) Å
  • b = 6.6231 (8) Å
  • c = 29.963 (2) Å
  • β = 92.526 (2)°
  • V = 898.02 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 298 (2) K
  • 0.48 × 0.28 × 0.13 mm

Data collection

  • Bruker SMART 1000 diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.841, T max = 0.953
  • 4304 measured reflections
  • 1531 independent reflections
  • 1310 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074
  • wR(F 2) = 0.164
  • S = 1.10
  • 1531 reflections
  • 109 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024355/om2252sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024355/om2252Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604–01) and the ‘Qing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03–01 A), which are gratefully acknowledged.

supplementary crystallographic information

Comment

Schiff bases are an important class of compounds which can be used in a variety of studies such as organic synthesis, catalyst, drug design, material science and life science and so on (Collison, et al., 1996; Mandal, et al., 1996). In the past decades, a continuing attention has been drawn to the Schiff bases derived from benzaldehyde or salicylaldehyde and their metal complexes for the investigation of luminescent properties which could be finely tuned by different substituent groups bonded to the phenolic ring (Lu et al., 2006; Yu et al., 2007; Yu et al., 2008). Here, in continuation of our previous studies (Dong, Duan et al., 2007; Shi, et al., 2007), we report the synthesis and X-ray structure of a new Schiff base bisoxime compound 2,2'-dichloro-1,1'-[butane-1,4-diyldioxybis(nitrilomethylidyne)]dibenzene.

The crystal structure of the title compound is built up by only the C18H18Cl2N2O2 molecules, in which all bond lengths are in normal ranges. The molecule, as shown in Fig. 1, lies across a crystallographic inversion centre (symmetry code: -x, -y, -z) and adopts an E configuration with respect to the azomethine C=N bond. The imino group is coplanar with the aromatic ring. Within the molecule, the planar units are parallel, with the distance 1.480 (4) Å [intra-molecular plane-to-plane distance], but extend in opposite directions from the dimethylene bridge. In the crystal structure, (Fig. 2) the title compound exhibits a layer packing structure via weak π-π stacking interactions [inter-molecular plane-to-plane distances between adjacent aromatic rings is 3.461 (3) Å]. Molecules in each layer are linked by intermolecular C8—H8···O1 hydrogen bonding interactions [C8···O1, 3.581 (5) Å].

Experimental

2,2'-Dichloro-1,1'-[butane-1,4-diyldioxybis(nitrilomethylidyne)]dibenzene was synthesized according to an analogous method reported earlier (Dong, He et al., 2007; Dong, et al., 2008; Liu, et al., 2008). To an ethanol solution (3 ml) of 2-chloro-benzaldehyde (281.1 mg, 2.00 mmol) was added an ethanol solution (2 ml) of 1, 4-bis(aminooxy)butane (120.2 mg, 1.00 mmol). The mixture solution was stirred at 328 K for 4 h. When cooled to room temperature, the precipitate was filtered, and washed successively with ethanol and hexane, respectively. The product was dried under vacuum and purified with recrystallization from ethanol to yield 219.8 mg of the title compound. Yield, 60.1%. mp. 334–335 K. Anal. Calc. for C18H18Cl2N2O2: C, 59.19; H, 4.97; N, 7.67. Found: C, 59.22; H, 5.03; N, 7.58.

Colorless needle-shaped single crystals suitable for X-ray diffraction studies were obtained after several weeks by slow evaporation from an ethyl-acetate/acetone mixed solution of the title compound.

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound with atom numbering scheme [Symmetry codes: -x, -y + 2, -z + 1]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
Fig. 2.
The packing diagram of the title compound showing intermolecular hydrogen bonds and π-π stacking interactions.

Crystal data

C18H18Cl2N2O2F000 = 380
Mr = 365.24Dx = 1.351 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2364 reflections
a = 4.5296 (5) Åθ = 3.2–28.2º
b = 6.6231 (8) ŵ = 0.37 mm1
c = 29.963 (2) ÅT = 298 (2) K
β = 92.526 (2)ºNeedle, colorless
V = 898.02 (16) Å30.48 × 0.28 × 0.13 mm
Z = 2

Data collection

Bruker SMART 1000 diffractometer1531 independent reflections
Radiation source: fine-focus sealed tube1310 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.057
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −5→5
Tmin = 0.841, Tmax = 0.953k = −7→5
4304 measured reflectionsl = −35→34

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.164  w = 1/[σ2(Fo2) + (0.0452P)2 + 1.0643P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1531 reflectionsΔρmax = 0.21 e Å3
109 parametersΔρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.8257 (3)0.7688 (2)0.71001 (4)0.0939 (5)
N10.4408 (7)0.6370 (5)0.57897 (10)0.0570 (8)
O10.2543 (6)0.7961 (4)0.56512 (8)0.0607 (7)
C10.0979 (8)0.7356 (6)0.52466 (11)0.0598 (9)
H1A−0.02730.62040.53040.072*
H1B0.23700.69680.50250.072*
C2−0.0885 (8)0.9111 (6)0.50759 (13)0.0643 (10)
H2A−0.21600.86500.48280.077*
H2B−0.21410.95510.53110.077*
C30.5650 (8)0.6708 (6)0.61688 (12)0.0570 (9)
H30.52330.78920.63210.068*
C40.7733 (7)0.5252 (5)0.63692 (11)0.0521 (8)
C50.9101 (8)0.5566 (6)0.67866 (12)0.0591 (9)
C61.1129 (9)0.4202 (7)0.69728 (13)0.0697 (11)
H61.20380.44540.72520.084*
C71.1776 (10)0.2505 (8)0.67465 (16)0.0820 (13)
H71.31330.15870.68710.098*
C81.0431 (11)0.2122 (7)0.63302 (16)0.0826 (13)
H81.08670.09460.61770.099*
C90.8444 (9)0.3496 (6)0.61452 (12)0.0636 (10)
H90.75620.32410.58650.076*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1045 (9)0.1019 (10)0.0731 (7)0.0144 (8)−0.0213 (6)−0.0275 (7)
N10.0621 (18)0.0562 (17)0.0522 (17)0.0094 (15)−0.0026 (14)0.0042 (14)
O10.0694 (16)0.0559 (15)0.0555 (14)0.0125 (12)−0.0105 (12)−0.0013 (12)
C10.063 (2)0.064 (2)0.0514 (19)−0.0040 (19)−0.0059 (15)0.0049 (18)
C20.056 (2)0.075 (3)0.061 (2)−0.0034 (19)−0.0106 (17)0.018 (2)
C30.064 (2)0.057 (2)0.0498 (19)0.0071 (18)−0.0003 (16)−0.0012 (16)
C40.0524 (19)0.060 (2)0.0436 (17)0.0034 (17)0.0046 (14)0.0085 (16)
C50.059 (2)0.073 (2)0.0451 (18)−0.0021 (19)0.0045 (15)0.0073 (18)
C60.061 (2)0.092 (3)0.055 (2)0.003 (2)−0.0034 (17)0.020 (2)
C70.074 (3)0.089 (3)0.083 (3)0.022 (3)0.000 (2)0.033 (3)
C80.097 (3)0.071 (3)0.080 (3)0.030 (3)0.011 (2)0.013 (2)
C90.074 (2)0.069 (2)0.0483 (19)0.010 (2)0.0036 (17)0.0047 (18)

Geometric parameters (Å, °)

Cl1—C51.742 (4)C3—H30.9300
N1—C31.265 (4)C4—C51.387 (5)
N1—O11.402 (4)C4—C91.387 (5)
O1—C11.434 (4)C5—C61.388 (5)
C1—C21.513 (5)C6—C71.351 (6)
C1—H1A0.9700C6—H60.9300
C1—H1B0.9700C7—C81.387 (7)
C2—C2i1.506 (8)C7—H70.9300
C2—H2A0.9700C8—C91.379 (5)
C2—H2B0.9700C8—H80.9300
C3—C41.460 (5)C9—H90.9300
C3—N1—O1111.8 (3)C5—C4—C3121.8 (3)
N1—O1—C1108.0 (3)C9—C4—C3121.0 (3)
O1—C1—C2108.6 (3)C4—C5—C6121.7 (4)
O1—C1—H1A110.0C4—C5—Cl1120.5 (3)
C2—C1—H1A110.0C6—C5—Cl1117.8 (3)
O1—C1—H1B110.0C7—C6—C5119.6 (4)
C2—C1—H1B110.0C7—C6—H6120.2
H1A—C1—H1B108.4C5—C6—H6120.2
C2i—C2—C1114.0 (4)C6—C7—C8120.4 (4)
C2i—C2—H2A108.8C6—C7—H7119.8
C1—C2—H2A108.8C8—C7—H7119.8
C2i—C2—H2B108.8C9—C8—C7119.6 (4)
C1—C2—H2B108.8C9—C8—H8120.2
H2A—C2—H2B107.7C7—C8—H8120.2
N1—C3—C4120.4 (3)C8—C9—C4121.3 (4)
N1—C3—H3119.8C8—C9—H9119.3
C4—C3—H3119.8C4—C9—H9119.3
C5—C4—C9117.3 (3)
C3—N1—O1—C1−173.4 (3)C3—C4—C5—Cl12.6 (5)
N1—O1—C1—C2−176.2 (3)C4—C5—C6—C7−0.9 (6)
O1—C1—C2—C2i66.7 (5)Cl1—C5—C6—C7178.0 (3)
O1—N1—C3—C4−178.7 (3)C5—C6—C7—C80.1 (7)
N1—C3—C4—C5−179.1 (4)C6—C7—C8—C90.7 (7)
N1—C3—C4—C91.5 (6)C7—C8—C9—C4−0.7 (7)
C9—C4—C5—C60.8 (5)C5—C4—C9—C8−0.1 (6)
C3—C4—C5—C6−178.6 (3)C3—C4—C9—C8179.4 (4)
C9—C4—C5—Cl1−178.0 (3)

Symmetry codes: (i) −x, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8···O1ii0.932.663.581 (5)171

Symmetry codes: (ii) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2252).

References

  • Collison, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev.148, 19–40.
  • Dong, W. K., Duan, J. G., Dong, C. M., Ren, Z. L. & Shi, J. Y. (2007). Z. Kristallogr. New Cryst. Struct.222, 327–328.
  • Dong, W. K., He, X. N., Dong, C. M., Wang, L., Zhong, J. K., Chen, X. & Yu, T. Z. (2007). Z. Kristallogr. New Cryst. Struct.222, 289–290.
  • Dong, W. K., Shi, J. Y., Zhong, J. K., Tian, Y. Q. & Duan, J. G. (2008). Chin. J. Inorg. Chem.28, 10–14.
  • Liu, G.-L., Chen, X., He, X.-N. & Dong, W.-K. (2008). Acta Cryst. E64, o659. [PMC free article] [PubMed]
  • Lu, Z. L., Yuan, M., Pan, F., Gao, S., Zhang, D. Q. & Zhu, D. B. (2006). Inorg. Chem.45, 3538–3548. [PubMed]
  • Mandal, S. S., Kumar, N. V. & Varsheney, U. (1996). J. Inorg. Biochem.63, 265–272. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, J., Dong, W., Zhang, Y. & Gao, S. (2007). Acta Cryst. E63, o4080.
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun.10, 401–403.
  • Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Qian, L., Fan, D. W., Dong, W. K., Chen, L. L. & Qiu, Y. Q. (2008). Inorg. Chim. Acta, 361, 233–240.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography