PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1827.
Published online 2008 August 23. doi:  10.1107/S1600536808026858
PMCID: PMC2960534

1-[5-(3,4-Dichlorophenyl)-3-(2-naphthyl)-4,5-dihydropyrazol-1-yl]ethanone

Abstract

In the title compound, C21H16Cl2N2O, the central pyrazoline ring makes dihedral angles of 90.1 (3) and 7.8 (3)°, with the pendant benzene ring and naphthalene ring system, respectively. In the crystal structure, weak C—H(...)O inter­actions lead to chains of mol­ecules.

Related literature

For related literature, see: Lu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1827-scheme1.jpg

Experimental

Crystal data

  • C21H16Cl2N2O
  • M r = 383.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1827-efi1.jpg
  • a = 6.2154 (12) Å
  • b = 9.3505 (19) Å
  • c = 16.319 (3) Å
  • α = 97.42 (3)°
  • β = 99.07 (3)°
  • γ = 104.12 (3)°
  • V = 894.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 113 (2) K
  • 0.22 × 0.20 × 0.12 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2004 [triangle]) T min = 0.922, T max = 0.956
  • 9131 measured reflections
  • 3155 independent reflections
  • 2709 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.090
  • S = 1.04
  • 3155 reflections
  • 236 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CrystalClear (Rigaku, 2004 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026858/hb2778sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026858/hb2778Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Haibin Song of Nankai University for helpful discussions, and the Science Foundation of GuangXi University for financial support (DD180021).

supplementary crystallographic information

Comment

The title compound, (I), (Fig. 1) was prepared and structurally characterized as part of our ongoing studies (Lu et al., 2006) of pyrazoline derivatives.

The pendant C14—C19 benzene ring and C1—C10 naphthalene ring make dihedral angles of 90.1 (3) and 7.8 (3)°, respectively, with the central N1/N2/C11/C12/C13 pyrazoline ring. The dihedral angle between the C14—C19 ring and the C1—C10 ring is 86.8 (3)°. The molecule of (I) is chiral: in the arbitrarily chosen asymmetric unit, C13 has R configuration, but crystal symmetry generates a racemic mixture. In the crystal of (I), molecules are linked by a weak C—H···O interaction (Table 1 and Fig. 2) into infinite chains.

Experimental

A mixture of 1-(naphthalen-2-yl)-3-(3,4-dichlorophenyl)prop-2-en-1-one (5.0 mmol), hydrazine hydrate (25.0 mmol) and acetic acid (30 ml) was heated at reflux for 5 h, then poured onto crushed ice. The precipitate was separated by filtration, washed with petroleum ether, and crystallized from ethyl acetate-petroleum ether to obtain the title compound.

The title compound (40 mg) was dissolved in a mixture of ethyl acetate (10 ml) and petroleum ether (30 ml) and the solution was kept at room temperature for 8 d. Natural evaporation of the solution gave colourless slabs of (I) suitable for X-Ray analysis. M.p. 515–516 K.

Refinement

All the H atoms were placed geometrically (C—H = 0.93–0.98 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
Fig. 2.
Part of the crystal structure of (I) showing C—H···O interactions as dashed lines.

Crystal data

C21H16Cl2N2OZ = 2
Mr = 383.26F000 = 396
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Melting point: 515-516 K K
a = 6.2154 (12) ÅMo Kα radiation λ = 0.71073 Å
b = 9.3505 (19) ÅCell parameters from 2978 reflections
c = 16.319 (3) Åθ = 2.3–27.5º
α = 97.42 (3)ºµ = 0.38 mm1
β = 99.07 (3)ºT = 113 (2) K
γ = 104.12 (3)ºSlab, colourless
V = 894.2 (3) Å30.22 × 0.20 × 0.12 mm

Data collection

Rigaku saturn diffractometer3155 independent reflections
Radiation source: rotating anode2709 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.037
T = 113(2) Kθmax = 25.0º
ω scansθmin = 2.3º
Absorption correction: multi-scan(Crystalclear; Rigaku, 2004)h = −7→7
Tmin = 0.922, Tmax = 0.956k = −11→10
9131 measured reflectionsl = −18→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090  w = 1/[σ2(Fo2) + (0.0556P)2 + 0.0148P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3155 reflectionsΔρmax = 0.20 e Å3
236 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.32350 (7)0.97267 (5)1.10751 (3)0.02660 (14)
Cl21.68608 (7)0.78933 (5)1.08859 (3)0.02684 (14)
O11.53261 (19)0.68503 (13)0.74819 (7)0.0286 (3)
N10.9532 (2)0.50512 (15)0.67138 (8)0.0198 (3)
N21.1666 (2)0.55742 (15)0.72303 (8)0.0206 (3)
C10.4859 (3)0.37150 (18)0.59400 (10)0.0215 (4)
H10.56700.44560.56920.026*
C20.2643 (3)0.30298 (19)0.55983 (11)0.0239 (4)
H20.19590.33150.51200.029*
C30.1354 (3)0.18853 (18)0.59586 (10)0.0215 (4)
C4−0.0965 (3)0.11843 (19)0.56347 (11)0.0266 (4)
H4−0.16980.14780.51700.032*
C5−0.2152 (3)0.0078 (2)0.59938 (12)0.0298 (4)
H5−0.3681−0.03620.57750.036*
C6−0.1072 (3)−0.03961 (19)0.66921 (11)0.0265 (4)
H6−0.1882−0.11540.69300.032*
C70.1177 (3)0.02613 (19)0.70205 (11)0.0238 (4)
H70.1885−0.00640.74780.029*
C80.2442 (3)0.14301 (18)0.66739 (10)0.0195 (4)
C90.4748 (3)0.21678 (18)0.70202 (10)0.0202 (4)
H90.54690.18790.74900.024*
C100.5944 (3)0.33057 (17)0.66748 (10)0.0194 (4)
C110.8300 (3)0.40644 (18)0.70550 (10)0.0185 (4)
C120.9545 (3)0.37641 (18)0.78625 (10)0.0210 (4)
H12A0.97400.27600.77900.025*
H12B0.87510.38930.83210.025*
C131.1838 (3)0.49564 (18)0.80228 (10)0.0205 (4)
H131.30770.44750.80760.025*
C141.2205 (3)0.61660 (17)0.87818 (10)0.0188 (4)
C151.4098 (3)0.64529 (18)0.94150 (10)0.0198 (4)
H151.51560.59100.93670.024*
C161.4433 (3)0.75409 (18)1.01202 (10)0.0197 (4)
C171.2860 (3)0.83565 (17)1.01969 (10)0.0204 (4)
C181.0972 (3)0.80925 (19)0.95591 (11)0.0245 (4)
H180.99260.86450.96050.029*
C191.0647 (3)0.70084 (19)0.88558 (11)0.0243 (4)
H190.93840.68380.84290.029*
C201.3468 (3)0.64765 (18)0.70068 (11)0.0220 (4)
C211.3033 (3)0.6979 (2)0.61719 (11)0.0283 (4)
H21A1.25300.78710.62450.042*
H21B1.18880.62040.57830.042*
H21C1.44030.71820.59540.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0326 (3)0.0253 (3)0.0227 (2)0.01150 (19)0.00395 (18)0.00158 (18)
Cl20.0236 (2)0.0309 (3)0.0231 (2)0.00903 (19)−0.00383 (17)0.00134 (18)
O10.0188 (6)0.0310 (7)0.0312 (7)−0.0007 (5)0.0034 (5)0.0045 (6)
N10.0164 (7)0.0214 (7)0.0185 (7)0.0017 (6)0.0020 (6)0.0008 (6)
N20.0166 (7)0.0245 (8)0.0178 (7)0.0005 (6)0.0022 (6)0.0046 (6)
C10.0215 (9)0.0208 (9)0.0212 (9)0.0025 (7)0.0054 (7)0.0044 (7)
C20.0237 (9)0.0251 (10)0.0217 (9)0.0047 (7)0.0029 (7)0.0052 (7)
C30.0204 (9)0.0199 (9)0.0222 (9)0.0031 (7)0.0054 (7)−0.0006 (7)
C40.0210 (9)0.0267 (10)0.0282 (9)0.0022 (7)0.0017 (7)0.0033 (8)
C50.0190 (9)0.0273 (10)0.0362 (11)−0.0026 (8)0.0040 (8)−0.0001 (8)
C60.0260 (9)0.0194 (9)0.0307 (10)−0.0022 (7)0.0109 (8)0.0023 (8)
C70.0263 (9)0.0209 (9)0.0228 (9)0.0029 (7)0.0064 (7)0.0029 (7)
C80.0202 (8)0.0172 (8)0.0198 (8)0.0029 (7)0.0075 (7)−0.0015 (7)
C90.0219 (9)0.0194 (9)0.0185 (8)0.0043 (7)0.0041 (7)0.0024 (7)
C100.0189 (8)0.0190 (9)0.0194 (8)0.0040 (7)0.0056 (7)0.0000 (7)
C110.0183 (8)0.0176 (9)0.0200 (8)0.0051 (7)0.0064 (7)0.0018 (7)
C120.0201 (8)0.0205 (9)0.0202 (8)0.0022 (7)0.0021 (7)0.0038 (7)
C130.0179 (8)0.0237 (9)0.0201 (8)0.0046 (7)0.0034 (7)0.0066 (7)
C140.0177 (8)0.0184 (9)0.0202 (8)0.0029 (7)0.0045 (7)0.0060 (7)
C150.0184 (8)0.0211 (9)0.0228 (9)0.0074 (7)0.0057 (7)0.0079 (7)
C160.0181 (8)0.0212 (9)0.0183 (8)0.0029 (7)0.0007 (7)0.0067 (7)
C170.0257 (9)0.0171 (9)0.0189 (8)0.0049 (7)0.0063 (7)0.0042 (7)
C180.0230 (9)0.0266 (10)0.0274 (9)0.0124 (8)0.0054 (7)0.0064 (8)
C190.0183 (8)0.0288 (10)0.0246 (9)0.0064 (7)−0.0001 (7)0.0057 (8)
C200.0196 (9)0.0190 (9)0.0255 (9)0.0023 (7)0.0056 (7)0.0014 (7)
C210.0261 (10)0.0289 (10)0.0283 (9)0.0004 (8)0.0090 (8)0.0086 (8)

Geometric parameters (Å, °)

Cl1—C171.7391 (17)C9—C101.380 (2)
Cl2—C161.7329 (17)C9—H90.9300
O1—C201.228 (2)C10—C111.458 (2)
N1—C111.292 (2)C11—C121.515 (2)
N1—N21.3905 (18)C12—C131.541 (2)
N2—C201.359 (2)C12—H12A0.9700
N2—C131.482 (2)C12—H12B0.9700
C1—C21.361 (2)C13—C141.513 (2)
C1—C101.424 (2)C13—H130.9800
C1—H10.9300C14—C151.384 (2)
C2—C31.423 (2)C14—C191.399 (2)
C2—H20.9300C15—C161.386 (2)
C3—C41.412 (2)C15—H150.9300
C3—C81.422 (2)C16—C171.390 (2)
C4—C51.370 (2)C17—C181.389 (2)
C4—H40.9300C18—C191.383 (2)
C5—C61.407 (2)C18—H180.9300
C5—H50.9300C19—H190.9300
C6—C71.370 (2)C20—C211.504 (2)
C6—H60.9300C21—H21A0.9600
C7—C81.419 (2)C21—H21B0.9600
C7—H70.9300C21—H21C0.9600
C8—C91.418 (2)
C11—N1—N2108.06 (13)C11—C12—H12A111.2
C20—N2—N1123.49 (13)C13—C12—H12A111.2
C20—N2—C13122.90 (14)C11—C12—H12B111.2
N1—N2—C13113.44 (13)C13—C12—H12B111.2
C2—C1—C10120.51 (16)H12A—C12—H12B109.1
C2—C1—H1119.7N2—C13—C14111.22 (13)
C10—C1—H1119.7N2—C13—C12101.19 (13)
C1—C2—C3121.26 (16)C14—C13—C12114.05 (14)
C1—C2—H2119.4N2—C13—H13110.0
C3—C2—H2119.4C14—C13—H13110.0
C4—C3—C8118.65 (15)C12—C13—H13110.0
C4—C3—C2122.65 (16)C15—C14—C19119.04 (15)
C8—C3—C2118.70 (15)C15—C14—C13120.14 (14)
C5—C4—C3121.12 (17)C19—C14—C13120.82 (14)
C5—C4—H4119.4C14—C15—C16120.68 (15)
C3—C4—H4119.4C14—C15—H15119.7
C4—C5—C6120.44 (16)C16—C15—H15119.7
C4—C5—H5119.8C15—C16—C17120.00 (15)
C6—C5—H5119.8C15—C16—Cl2119.11 (12)
C7—C6—C5119.83 (16)C17—C16—Cl2120.87 (13)
C7—C6—H6120.1C18—C17—C16119.75 (15)
C5—C6—H6120.1C18—C17—Cl1119.24 (13)
C6—C7—C8121.11 (16)C16—C17—Cl1121.01 (13)
C6—C7—H7119.4C19—C18—C17120.04 (15)
C8—C7—H7119.4C19—C18—H18120.0
C9—C8—C7122.30 (16)C17—C18—H18120.0
C9—C8—C3118.87 (15)C18—C19—C14120.47 (15)
C7—C8—C3118.82 (15)C18—C19—H19119.8
C10—C9—C8121.33 (15)C14—C19—H19119.8
C10—C9—H9119.3O1—C20—N2119.98 (16)
C8—C9—H9119.3O1—C20—C21123.45 (15)
C9—C10—C1119.27 (15)N2—C20—C21116.56 (15)
C9—C10—C11120.09 (15)C20—C21—H21A109.5
C1—C10—C11120.64 (15)C20—C21—H21B109.5
N1—C11—C10122.02 (15)H21A—C21—H21B109.5
N1—C11—C12113.82 (14)C20—C21—H21C109.5
C10—C11—C12124.16 (14)H21A—C21—H21C109.5
C11—C12—C13102.71 (13)H21B—C21—H21C109.5
C11—N1—N2—C20171.10 (14)C10—C11—C12—C13−174.36 (15)
C11—N1—N2—C13−4.34 (17)C20—N2—C13—C1471.20 (19)
C10—C1—C2—C3−0.4 (2)N1—N2—C13—C14−113.33 (15)
C1—C2—C3—C4178.03 (16)C20—N2—C13—C12−167.31 (14)
C1—C2—C3—C8−1.9 (2)N1—N2—C13—C128.16 (16)
C8—C3—C4—C5−0.5 (3)C11—C12—C13—N2−8.19 (14)
C2—C3—C4—C5179.53 (16)C11—C12—C13—C14111.31 (15)
C3—C4—C5—C6−0.7 (3)N2—C13—C14—C15−121.67 (16)
C4—C5—C6—C70.6 (3)C12—C13—C14—C15124.67 (16)
C5—C6—C7—C80.7 (3)N2—C13—C14—C1958.3 (2)
C6—C7—C8—C9177.62 (15)C12—C13—C14—C19−55.3 (2)
C6—C7—C8—C3−1.8 (2)C19—C14—C15—C161.1 (2)
C4—C3—C8—C9−177.73 (15)C13—C14—C15—C16−178.91 (14)
C2—C3—C8—C92.2 (2)C14—C15—C16—C170.0 (2)
C4—C3—C8—C71.8 (2)C14—C15—C16—Cl2−178.49 (12)
C2—C3—C8—C7−178.31 (15)C15—C16—C17—C18−1.0 (2)
C7—C8—C9—C10−179.75 (15)Cl2—C16—C17—C18177.50 (13)
C3—C8—C9—C10−0.3 (2)C15—C16—C17—Cl1179.93 (12)
C8—C9—C10—C1−2.0 (2)Cl2—C16—C17—Cl1−1.6 (2)
C8—C9—C10—C11178.74 (14)C16—C17—C18—C190.8 (2)
C2—C1—C10—C92.3 (2)Cl1—C17—C18—C19179.94 (13)
C2—C1—C10—C11−178.40 (15)C17—C18—C19—C140.3 (3)
N2—N1—C11—C10179.26 (13)C15—C14—C19—C18−1.2 (2)
N2—N1—C11—C12−1.87 (18)C13—C14—C19—C18178.76 (14)
C9—C10—C11—N1174.36 (14)N1—N2—C20—O1−177.25 (14)
C1—C10—C11—N1−4.9 (2)C13—N2—C20—O1−2.2 (2)
C9—C10—C11—C12−4.4 (2)N1—N2—C20—C213.4 (2)
C1—C10—C11—C12176.34 (14)C13—N2—C20—C21178.39 (14)
N1—C11—C12—C136.80 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.583.501 (2)171

Symmetry codes: (i) x−2, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2778).

References

  • Lu, Z.-K., Li, S. & Huang, P.-M. (2006). Acta Cryst. E62, o5830–o5831.
  • Rigaku (2004). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography