PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1682.
Published online 2008 August 6. doi:  10.1107/S160053680802360X
PMCID: PMC2960532

N′-(4-Hydroxy­benzyl­idene)-4-meth­oxybenzohydrazide

Abstract

The title compound, C15H14N2O3, was prepared by the reaction of 4-hydroxy­benzaldehyde and 4-methoxy­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 6.8 (1)°. The meth­oxy group is disordered over two orientations with occupancies of ca 0.63 and 0.37. In the major disorder component, the meth­oxy group is coplanar with the attached ring. In the crystal structure, the mol­ecules are linked into a three-dimensional framework by inter­molecular O—H(...)O and N—H(...)O hydrogen bonds.

Related literature

For the synthesis of Schiff bases, see: Akitsu & Einaga (2006 [triangle]); Butcher et al. (2005 [triangle]); Habibi et al. (2007 [triangle]); Pradeep (2005 [triangle]). For related Schiff base compounds, see: Wang et al. (2006 [triangle]); Wei et al. (2006 [triangle], 2008a [triangle],b [triangle]); Wei & Wang (2006 [triangle]); Zhu et al. (2007 [triangle]). For related structures, see: Odabaşoğlu et al. (2007 [triangle]); Yathirajan et al. (2007 [triangle]); Yehye et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1682-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O3
  • M r = 270.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1682-efi1.jpg
  • a = 12.342 (2) Å
  • b = 7.854 (2) Å
  • c = 27.889 (3) Å
  • V = 2703.4 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 (2) K
  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.979, T max = 0.981
  • 12214 measured reflections
  • 2308 independent reflections
  • 1591 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.135
  • S = 1.04
  • 2308 reflections
  • 201 parameters
  • 26 restraints
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802360X/ci2639sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802360X/ci2639Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation, Education Office of Anhui Province, People’s Republic of China, for research grant No. KJ2007A126ZC.

supplementary crystallographic information

Comment

Schiff bases are readily synthesized by the reaction of aldehydes with primary amines (Akitsu & Einaga, 2006; Pradeep, 2005; Butcher et al., 2005; Habibi et al., 2007). We have reported a few Schiff bases and their complexes (Wei et al., 2008a,b; Wei et al., 2006; Wei & Wang, 2006; Zhu et al., 2007; Wang et al., 2006). In this paper, we report the crystal structure of a new Schiff base compound.

Bond lengths and angles in the title compound (Fig. 1) are comparable with those observed in other Schiff bases (Yehye et al., 2008; Odabaşoğlu et al., 2007; Yathirajan et al., 2007). The dihedral angle between the C1–C6 and C9–C14 phenyl rings is 6.8 (1)°, indicating that they are nearly coplanar. In the major disorder component, the methoxy group is coplanar with the attached ring [C15—O3—C12—C11 = -2.6 (6)°].

The crystal structure is stabilized by intermolecular O—H···O and N—H···O hydrogen bonds (Table 1). These hydrogen bonds link the molecules into a three-dimensional framework (Fig. 2).

Experimental

4-Hydroxybenzaldehyde (1.0 mmol, 122.1 mg) and 4-methoxybenzohydrazide (1.0 mmol, 166.2 mg) were added to methanol (30 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. After keeping the solution in air for 12 d, colourless needle-shaped crystals were formed.

Refinement

H atoms were positioned geometrically (C–H = 0.93–0.96 Å, O–H = 0.82 Å, N–H = 0.86 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O,Cmethyl). The methoxy group is disordered over two sites with occupancies of 0.630 (2) and 0.370 (2). The corresponding C—O distances in both disorder components were restrained to be equal. The displacement parameters of atoms O3, O3A, C15 and C15A were restrained to an approximate isotropic behaviour. The low resolution is caused by weak diffraction of the crystal.

Figures

Fig. 1.
The molecular structure of the title compounnd, showing 30% probability displacement ellipsoids. Both disorder components are shown.
Fig. 2.
The crystal packing of the title compound, viewed approximately along the a axis. Hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.

Crystal data

C15H14N2O3F000 = 1136
Mr = 270.28Dx = 1.328 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2798 reflections
a = 12.342 (2) Åθ = 2.4–24.1º
b = 7.854 (2) ŵ = 0.09 mm1
c = 27.889 (3) ÅT = 296 (2) K
V = 2703.4 (9) Å3Cut from needle, colourless
Z = 80.23 × 0.20 × 0.20 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer2308 independent reflections
Radiation source: fine-focus sealed tube1591 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 296(2) Kθmax = 24.7º
ω scansθmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −14→12
Tmin = 0.979, Tmax = 0.981k = −9→9
12214 measured reflectionsl = −32→29

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.135  w = 1/[σ2(Fo2) + (0.0514P)2 + 1.0313P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2308 reflectionsΔρmax = 0.24 e Å3
201 parametersΔρmin = −0.24 e Å3
26 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.91965 (15)−0.0226 (3)0.86782 (6)0.0813 (6)
H10.97790.01150.87820.122*
O20.61634 (13)0.0498 (2)0.59539 (5)0.0645 (5)
N10.76203 (15)0.1620 (2)0.65728 (6)0.0591 (5)
N20.74642 (15)0.2399 (2)0.61337 (6)0.0599 (5)
H2A0.78480.32650.60510.072*
C10.86057 (18)0.1561 (3)0.73055 (8)0.0588 (6)
C20.7901 (2)0.0470 (3)0.75378 (8)0.0700 (7)
H20.72710.01230.73830.084*
C30.8111 (2)−0.0109 (4)0.79911 (8)0.0752 (8)
H30.7623−0.08380.81410.090*
C40.90430 (19)0.0382 (3)0.82278 (8)0.0596 (6)
C50.9763 (2)0.1447 (3)0.80018 (8)0.0653 (6)
H51.04010.17680.81550.078*
C60.9535 (2)0.2038 (3)0.75471 (8)0.0701 (7)
H61.00200.27770.73990.084*
C70.8374 (2)0.2223 (3)0.68288 (8)0.0673 (7)
H70.87920.31130.67090.081*
C80.67021 (18)0.1775 (3)0.58398 (7)0.0546 (6)
C90.65325 (19)0.2623 (3)0.53725 (8)0.0605 (6)
C100.5570 (2)0.2357 (4)0.51343 (10)0.0882 (9)
H100.50310.16930.52740.106*
C110.5400 (3)0.3083 (4)0.46835 (11)0.1097 (12)
H110.47470.29010.45250.132*
C120.6183 (4)0.4056 (4)0.44727 (10)0.1047 (12)
C130.7138 (3)0.4305 (4)0.47006 (9)0.0938 (10)
H130.76780.49530.45560.113*
C140.7314 (2)0.3606 (3)0.51443 (8)0.0735 (7)
H140.79730.37950.52970.088*
O30.6249 (4)0.4882 (5)0.40185 (13)0.0866 (14)0.630 (7)
C150.5326 (4)0.4557 (6)0.37318 (19)0.0891 (18)0.630 (7)
H15A0.53970.51420.34310.134*0.630 (7)
H15B0.46890.49530.38950.134*0.630 (7)
H15C0.52660.33550.36750.134*0.630 (7)
O3A0.5470 (5)0.4517 (9)0.40930 (19)0.092 (2)0.370 (7)
C15A0.6242 (10)0.5249 (18)0.3782 (4)0.123 (5)0.370 (7)
H15D0.58890.56320.34950.185*0.370 (7)
H15E0.67810.44160.37020.185*0.370 (7)
H15F0.65820.61990.39380.185*0.370 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0866 (13)0.0986 (14)0.0586 (10)−0.0037 (11)−0.0139 (9)0.0213 (10)
O20.0700 (10)0.0642 (10)0.0593 (9)−0.0056 (9)−0.0002 (8)0.0010 (8)
N10.0716 (12)0.0616 (12)0.0440 (10)−0.0018 (10)−0.0069 (9)0.0074 (9)
N20.0738 (12)0.0587 (11)0.0472 (10)−0.0070 (10)−0.0092 (10)0.0078 (8)
C10.0698 (15)0.0560 (13)0.0507 (12)−0.0037 (12)−0.0085 (11)0.0039 (11)
C20.0712 (16)0.0746 (17)0.0641 (14)−0.0120 (14)−0.0162 (12)0.0100 (13)
C30.0751 (16)0.0836 (19)0.0668 (15)−0.0157 (14)−0.0104 (13)0.0229 (14)
C40.0702 (15)0.0594 (14)0.0491 (13)0.0066 (12)−0.0070 (11)0.0040 (11)
C50.0717 (15)0.0651 (15)0.0591 (14)−0.0069 (13)−0.0155 (12)0.0025 (12)
C60.0786 (17)0.0702 (17)0.0615 (14)−0.0191 (13)−0.0114 (13)0.0109 (12)
C70.0794 (17)0.0673 (16)0.0553 (14)−0.0134 (13)−0.0090 (12)0.0096 (12)
C80.0612 (13)0.0529 (13)0.0498 (12)0.0038 (11)−0.0007 (11)−0.0037 (10)
C90.0812 (17)0.0507 (13)0.0495 (12)0.0051 (12)−0.0145 (12)−0.0050 (10)
C100.104 (2)0.0766 (19)0.0841 (19)−0.0048 (16)−0.0388 (17)0.0022 (15)
C110.142 (3)0.087 (2)0.099 (2)0.010 (2)−0.075 (2)−0.0072 (19)
C120.193 (4)0.0605 (18)0.0604 (18)0.013 (2)−0.040 (2)−0.0018 (14)
C130.155 (3)0.0744 (19)0.0519 (15)0.0010 (19)−0.0118 (18)0.0050 (13)
C140.103 (2)0.0662 (16)0.0512 (13)−0.0025 (15)−0.0111 (13)0.0014 (12)
O30.105 (3)0.090 (3)0.064 (2)−0.025 (2)−0.024 (2)0.0248 (19)
C150.115 (4)0.090 (3)0.063 (3)0.003 (3)−0.032 (3)0.010 (2)
O3A0.101 (5)0.116 (5)0.059 (4)0.009 (4)−0.019 (3)0.019 (3)
C15A0.137 (8)0.137 (8)0.095 (7)−0.006 (6)0.002 (7)0.043 (6)

Geometric parameters (Å, °)

O1—C41.357 (2)C9—C101.377 (3)
O1—H10.82C9—C141.389 (3)
O2—C81.245 (3)C10—C111.396 (4)
N1—C71.265 (3)C10—H100.93
N1—N21.382 (2)C11—C121.365 (5)
N2—C81.340 (3)C11—H110.93
N2—H2A0.86C12—C131.354 (5)
C1—C61.382 (3)C12—O3A1.424 (6)
C1—C21.382 (3)C12—O31.426 (4)
C1—C71.456 (3)C13—C141.371 (3)
C2—C31.368 (3)C13—H130.93
C2—H20.93C14—H140.93
C3—C41.381 (3)O3—C151.415 (5)
C3—H30.93C15—H15A0.96
C4—C51.373 (3)C15—H15B0.96
C5—C61.379 (3)C15—H15C0.96
C5—H50.93O3A—C15A1.412 (8)
C6—H60.93C15A—H15D0.96
C7—H70.93C15A—H15E0.96
C8—C91.479 (3)C15A—H15F0.96
C4—O1—H1109.5C9—C10—C11120.1 (3)
C7—N1—N2115.9 (2)C9—C10—H10120.0
C8—N2—N1118.51 (19)C11—C10—H10120.0
C8—N2—H2A120.7C12—C11—C10120.7 (3)
N1—N2—H2A120.7C12—C11—H11119.6
C6—C1—C2117.5 (2)C10—C11—H11119.6
C6—C1—C7120.7 (2)C13—C12—C11119.7 (3)
C2—C1—C7121.7 (2)C13—C12—O3A148.3 (4)
C3—C2—C1121.3 (2)C11—C12—O3A91.4 (4)
C3—C2—H2119.3C13—C12—O3107.6 (3)
C1—C2—H2119.3C11—C12—O3132.7 (3)
C2—C3—C4120.5 (2)C12—C13—C14120.2 (3)
C2—C3—H3119.8C12—C13—H13119.9
C4—C3—H3119.8C14—C13—H13119.9
O1—C4—C5123.3 (2)C13—C14—C9121.8 (3)
O1—C4—C3117.4 (2)C13—C14—H14119.1
C5—C4—C3119.3 (2)C9—C14—H14119.1
C4—C5—C6119.7 (2)C15—O3—C12111.9 (4)
C4—C5—H5120.2O3—C15—H15A109.5
C6—C5—H5120.2O3—C15—H15B109.5
C5—C6—C1121.7 (2)H15A—C15—H15B109.5
C5—C6—H6119.1O3—C15—H15C109.5
C1—C6—H6119.1H15A—C15—H15C109.5
N1—C7—C1121.7 (2)H15B—C15—H15C109.5
N1—C7—H7119.1C15A—O3A—C1298.2 (8)
C1—C7—H7119.1O3A—C15A—H15D109.5
O2—C8—N2120.9 (2)O3A—C15A—H15E109.5
O2—C8—C9120.8 (2)H15D—C15A—H15E109.5
N2—C8—C9118.3 (2)O3A—C15A—H15F109.5
C10—C9—C14117.5 (2)H15D—C15A—H15F109.5
C10—C9—C8118.6 (2)H15E—C15A—H15F109.5
C14—C9—C8123.8 (2)
C7—N1—N2—C8177.7 (2)N2—C8—C9—C1423.2 (3)
C6—C1—C2—C30.4 (4)C14—C9—C10—C11−0.9 (4)
C7—C1—C2—C3−178.2 (2)C8—C9—C10—C11−177.4 (2)
C1—C2—C3—C4−0.3 (4)C9—C10—C11—C120.2 (5)
C2—C3—C4—O1179.4 (2)C10—C11—C12—C130.8 (5)
C2—C3—C4—C5−0.6 (4)C10—C11—C12—O3A−173.0 (4)
O1—C4—C5—C6−178.6 (2)C10—C11—C12—O3177.2 (4)
C3—C4—C5—C61.4 (4)C11—C12—C13—C14−1.0 (5)
C4—C5—C6—C1−1.3 (4)O3A—C12—C13—C14167.1 (6)
C2—C1—C6—C50.4 (4)O3—C12—C13—C14−178.3 (3)
C7—C1—C6—C5179.0 (2)C12—C13—C14—C90.3 (4)
N2—N1—C7—C1178.0 (2)C10—C9—C14—C130.6 (4)
C6—C1—C7—N1169.3 (2)C8—C9—C14—C13176.9 (2)
C2—C1—C7—N1−12.1 (4)C13—C12—O3—C15174.2 (4)
N1—N2—C8—O2−1.7 (3)C11—C12—O3—C15−2.5 (7)
N1—N2—C8—C9179.47 (18)O3A—C12—O3—C15−17.1 (5)
O2—C8—C9—C1020.6 (3)C13—C12—O3A—C15A22.4 (11)
N2—C8—C9—C10−160.5 (2)C11—C12—O3A—C15A−167.9 (7)
O2—C8—C9—C14−155.7 (2)O3—C12—O3A—C15A1.4 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.153.007 (3)172
O1—H1···O2ii0.821.882.696 (2)170

Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) x+1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2639).

References

  • Akitsu, T. & Einaga, Y. (2006). Acta Cryst. E62, o4315–o4317.
  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007–o1009.
  • Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, o2881.
  • Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916–o1918.
  • Pradeep, C. P. (2005). Acta Cryst. E61, o3825–o3827.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, F.-W., Wei, Y.-J. & Zhu, Q.-Y. (2006). Chin. J. Struct. Chem.25, 1179–1182.
  • Wei, Y.-J. & Wang, F.-W. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem.36, 723–727.
  • Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2006). Chin. J. Struct. Chem.25, 1090–1094.
  • Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2008a). Acta Cryst. E64, m859–m860. [PMC free article] [PubMed]
  • Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2008b). Transition Met. Chem.33, 543–546.
  • Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o936–o938.
  • Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1452. [PMC free article] [PubMed]
  • Zhu, C.-G., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m3197–m3198.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography