PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1724.
Published online 2008 August 9. doi:  10.1107/S160053680802480X
PMCID: PMC2960530

Bis(4,6-diamino­pyrimidin-2-yl) disulfide dimethyl sufoxide disolvate

Abstract

The title compound, C8H10N8S2·2C2H6SO, was obtained unintentionally during an attempt to prepare a thiol­ate derivative of trimethyl­tin. The complete disulfide mol­ecule is generated by twofold rotation symmetry and the C—S—S—C torsion angle around the S—S bond is −85.70 (10)°. The mol­ecules are connected via N—H(...)N hydrogen bonds into strongly corrugated layers parallel to (001), generating an R 2 2(8) motif. The solvent mol­ecule, which exhibits minor disorder of its S atom [site occupancies = 0.9591 (18) and 0.0409 (18)], is linked to this layer via a pair of N—H(...)O inter­actions.

Related literature

For information on the preferred conformations of organic disulfides, see: Sączewski et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1724-scheme1.jpg

Experimental

Crystal data

  • C8H10N8S2·2C2H6OS
  • M r = 438.62
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1724-efi1.jpg
  • a = 11.2612 (4) Å
  • b = 11.9948 (5) Å
  • c = 15.0754 (6) Å
  • V = 2036.32 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.49 mm−1
  • T = 130 (2) K
  • 0.40 × 0.10 × 0.10 mm

Data collection

  • Kuma KM-4-CCD κ geometry diffractometer
  • Absorption correction: none
  • 17524 measured reflections
  • 2240 independent reflections
  • 1944 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.078
  • S = 1.04
  • 2240 reflections
  • 146 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2003 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802480X/hb2773sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802480X/hb2773Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound, (I), is shown in Fig. 1. In the crystal it adopts a chiral conformation of C2 symmetry with the torsion angle around the S–S bond of -85.70 (10)°. The S–S bond length of 2.0249 (7) Å is typical of disulfides in a screw conformation (Sączewski et al., 2006). In turn the torsion angle of -8.23 (13)° around the C–S bond shows that the disulfide S atoms are situated close to the pyrimidine plane.

The component molecules of (I) are connected via weak N—H···N interactions generating R22(8) hydrogen-bond motif into strongly corrugated layer parallel to (001) (Fig. 2, Table 1). The solvent molecules, which exhibit minor disorder of their S atoms, join to this layer via a pair of N—H···O interactions and thus all N–H donors are involved in hydrogen bonding. Crystal packing in the title compound is shown in Fig. 3.

Experimental

1 mmol of 4,6-diaminopyrimidine-2-thiol was dissolved in 10 ml of DMSO at room temperature and was neutralized by the addition of 1 ml of 1 M solution of NaOH in methanol. Then, 5 ml of a methanolic solution containing 1 mmol of triorganotin chloride was added and the solution was stirred at room temperature for 1 h. Filtration removed minor solid byproducts and the solution was concentrated by rotary evaporation. After cooling and leaving the solution in the refrigerator for about one week, colourless prisms of (I) appeared.

Refinement

The S atom of the DMSO molecule is disordered over two positions in a 0.9591 (18):0.0409 (18) ratio. The minor component was refined isotropically.

The H atoms of the N—H groups were located in a difference map and refined isotropically. Positions of the H atoms from the C—H groups were determined geometrically (C—H = 0.96Å) and refined as riding with their isotropic displacement parameters freely refined.

Figures

Fig. 1.
: The molecular structure of (I) with displacement ellipsoids shown at the 50% probability level. Bonds of the DMSO molecule in the minor orientation are shown as dashed lines. The unlabelled atoms of the disulfide molecule are generated by the symmetry ...
Fig. 2.
: The crystal structure of (I) viewed down the b axis. Hydrogen bonds are shown with dashed lines.
Fig. 3.
: Hydrogen-bonded two-dimesional assembly of molecules in (I), parallel to the (001) plane. Hydrogen bonds are shown with dashed lines.

Crystal data

C8H10N8S2·2C2H6OSF000 = 920
Mr = 438.62Dx = 1.431 Mg m3
Orthorhombic, PccnMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 8255 reflections
a = 11.2612 (4) Åθ = 4–27º
b = 11.9948 (5) ŵ = 0.49 mm1
c = 15.0754 (6) ÅT = 130 (2) K
V = 2036.32 (14) Å3Prism, colourless
Z = 40.40 × 0.10 × 0.10 mm

Data collection

Kuma KM-4-CCD κ geometry diffractometer1944 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Monochromator: graphiteθmax = 27.1º
T = 130(2) Kθmin = 4.7º
ω scansh = −14→14
Absorption correction: nonek = −15→15
17524 measured reflectionsl = −19→12
2240 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078  w = 1/[σ2(Fo2) + (0.0487P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2240 reflectionsΔρmax = 0.23 e Å3
146 parametersΔρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. DMSO molecule is slightly disordered. In the minor orientation the DMSO C and O atoms superimpose with the C and O atoms of the major orientation. The S atom is split into two positions with occupancies 0.96 and 0.04.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.69207 (3)0.18545 (3)0.35324 (2)0.01604 (12)
N10.57870 (10)0.31222 (10)0.22912 (8)0.0152 (3)
C20.58248 (12)0.21471 (12)0.26959 (9)0.0144 (3)
N30.51503 (10)0.12462 (10)0.25880 (8)0.0170 (3)
C40.43156 (13)0.13306 (12)0.19373 (10)0.0189 (3)
C50.42109 (13)0.22991 (12)0.14298 (10)0.0198 (3)
H5A0.36560.23450.09480.028 (5)*
C60.49402 (13)0.31911 (12)0.16390 (10)0.0166 (3)
N70.36069 (14)0.04423 (12)0.18104 (11)0.0279 (4)
H7A0.3204 (18)0.0445 (16)0.1393 (13)0.026 (5)*
H7B0.3746 (16)−0.0163 (16)0.2079 (11)0.024 (5)*
N80.48636 (13)0.41723 (12)0.11984 (10)0.0221 (3)
H8A0.4314 (19)0.4234 (16)0.0824 (13)0.036 (6)*
H8B0.5057 (18)0.4735 (17)0.1454 (14)0.035 (6)*
S20.26010 (4)0.05431 (4)0.41883 (3)0.02342 (15)0.9591 (18)
O10.26997 (10)0.08760 (10)0.51429 (7)0.0276 (3)
C90.21608 (17)−0.08841 (15)0.41993 (13)0.0341 (4)
H9A0.2808−0.13380.44020.057 (7)*
H9B0.1495−0.09740.45910.047 (6)*
H9C0.1939−0.11090.36110.071 (8)*
C100.1254 (2)0.1121 (2)0.37893 (17)0.0564 (7)
H10A0.13270.19160.37380.071 (8)*
H10B0.10720.08090.32190.104 (11)*
H10C0.06280.09440.41990.056 (7)*
S2'0.1601 (14)0.0428 (13)0.4582 (10)0.056 (5)*0.0409 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01515 (19)0.01586 (19)0.0171 (2)0.00024 (13)−0.00058 (14)0.00286 (14)
N10.0156 (6)0.0131 (6)0.0167 (7)0.0008 (5)−0.0011 (5)−0.0004 (5)
C20.0139 (6)0.0154 (7)0.0138 (7)0.0025 (5)0.0023 (5)−0.0012 (6)
N30.0172 (6)0.0151 (6)0.0185 (7)−0.0009 (5)−0.0007 (5)−0.0001 (5)
C40.0186 (7)0.0161 (7)0.0221 (8)0.0002 (6)−0.0010 (6)−0.0024 (6)
C50.0201 (7)0.0168 (8)0.0226 (8)0.0006 (6)−0.0058 (6)−0.0014 (6)
C60.0179 (7)0.0158 (7)0.0162 (7)0.0024 (5)0.0010 (6)−0.0013 (6)
N70.0306 (8)0.0179 (7)0.0353 (9)−0.0077 (6)−0.0162 (7)0.0053 (7)
N80.0252 (7)0.0164 (7)0.0247 (8)−0.0013 (6)−0.0099 (6)0.0019 (6)
S20.0229 (2)0.0294 (3)0.0179 (2)0.00107 (17)−0.00281 (17)0.00052 (17)
O10.0298 (6)0.0316 (7)0.0215 (6)0.0015 (5)−0.0053 (5)−0.0091 (5)
C90.0388 (10)0.0317 (10)0.0318 (11)−0.0018 (8)−0.0077 (8)−0.0085 (8)
C100.0490 (14)0.0504 (14)0.0697 (17)0.0079 (11)−0.0347 (13)0.0077 (13)

Geometric parameters (Å, °)

S1—C21.7990 (15)N7—H7B0.846 (19)
S1—S1i2.0249 (7)N8—H8A0.84 (2)
N1—C21.3198 (18)N8—H8B0.81 (2)
N1—C61.3722 (19)S2—O11.4976 (11)
C2—N31.3309 (19)S2—C101.773 (2)
N3—C41.3623 (19)S2—C91.7822 (19)
C4—N71.345 (2)C9—H9A0.9600
C4—C51.396 (2)C9—H9B0.9601
C5—C61.385 (2)C9—H9C0.9601
C5—H5A0.9601C10—H10A0.9601
C6—N81.354 (2)C10—H10B0.9601
N7—H7A0.78 (2)C10—H10C0.9600
C2—S1—S1i107.03 (5)C6—N8—H8A116.9 (13)
C2—N1—C6114.02 (12)C6—N8—H8B118.4 (14)
N1—C2—N3130.14 (13)H8A—N8—H8B116 (2)
N1—C2—S1121.27 (11)O1—S2—C10106.58 (10)
N3—C2—S1108.59 (10)O1—S2—C9105.54 (8)
C2—N3—C4114.92 (12)C10—S2—C998.08 (11)
N7—C4—N3116.94 (14)S2—C9—H9A109.7
N7—C4—C5122.08 (15)S2—C9—H9B109.3
N3—C4—C5120.98 (13)H9A—C9—H9B109.5
C6—C5—C4117.90 (14)S2—C9—H9C109.5
C6—C5—H5A120.9H9A—C9—H9C109.5
C4—C5—H5A121.2H9B—C9—H9C109.5
N8—C6—N1116.62 (13)S2—C10—H10A110.0
N8—C6—C5121.46 (14)S2—C10—H10B109.5
N1—C6—C5121.91 (13)H10A—C10—H10B109.5
C4—N7—H7A117.4 (15)S2—C10—H10C108.9
C4—N7—H7B120.2 (12)H10A—C10—H10C109.5
H7A—N7—H7B119.9 (19)H10B—C10—H10C109.5
C6—N1—C2—N3−2.4 (2)C2—N3—C4—C50.6 (2)
C6—N1—C2—S1176.75 (10)N7—C4—C5—C6176.79 (15)
S1i—S1—C2—N1−8.23 (13)N3—C4—C5—C6−3.3 (2)
S1i—S1—C2—N3171.09 (8)C2—N1—C6—N8−179.77 (13)
N1—C2—N3—C42.5 (2)C2—N1—C6—C5−0.8 (2)
S1—C2—N3—C4−176.76 (10)C4—C5—C6—N8−177.67 (14)
C2—N3—C4—N7−179.45 (14)C4—C5—C6—N13.4 (2)

Symmetry codes: (i) −x+3/2, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N7—H7A···O1ii0.78 (2)2.20 (2)2.959 (2)165 (2)
N7—H7B···N1iii0.846 (19)2.33 (2)3.169 (2)175.1 (16)
N8—H8A···O1iv0.84 (2)2.09 (2)2.9109 (19)164.4 (18)
N8—H8B···N3v0.81 (2)2.33 (2)3.088 (2)156.8 (19)

Symmetry codes: (ii) −x+1/2, y, z−1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2; (v) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2773).

References

  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Abingdon, Oxfordshire, England.
  • Sączewski, J., Frontera, A., Gdaniec, M., Brzozowski, Z., Sączewski, F., Tabin, P., Quinoñero, D. & Deyà, P. M. (2006). Chem. Phys. Lett.422, 234–239.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1989). Stereochemical Workstation Operation Manual Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography