PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1685.
Published online 2008 August 6. doi:  10.1107/S1600536808023842
PMCID: PMC2960528

Acetoguanamine N,N-dimethyl­formamide solvate

Abstract

The structure of acetoguanamine (or 2,4-diamino-6-methyl-1,3,5-triazine) has been determined as the N,N-dimethyl­formamide solvate, C4H7N5·C3H7NO. The mol­ecular components are associated in the crystal structure to form ribbons stabilized by three N—H(...)N and one N—H(...)O hydrogen bonds which involve NH groups as donors and the N atoms of the heterocyclic ring and the carbonyl O atom of the solvent as acceptors.

Related literature

For related literature, see: Portalone & Colapietro (2007a [triangle]). For a general approach to the use of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supra­molecular reagents, see: Portalone et al. (1999 [triangle]); Portalone & Colapietro (2007a [triangle],b [triangle] and references therein). For the computation of ring patterns formed by hydrogen bonds in crystal structures, see: Etter et al. (1990 [triangle]); Bernstein et al. (1995 [triangle]); Motherwell et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1685-scheme1.jpg

Experimental

Crystal data

  • C4H7N5·C3H7NO
  • M r = 198.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1685-efi1.jpg
  • a = 25.548 (2) Å
  • b = 23.0626 (19) Å
  • c = 7.2689 (9) Å
  • V = 4282.8 (7) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 (2) K
  • 0.15 × 0.14 × 0.14 mm

Data collection

  • Oxford Diffraction Xcalibur S CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.985, T max = 0.990
  • 27177 measured reflections
  • 1127 independent reflections
  • 698 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.127
  • S = 0.91
  • 1127 reflections
  • 132 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3? (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023842/tk2285sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023842/tk2285Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank MIUR (Rome) for 2006 financial support of the project ‘X-ray diffractometry and spectrometry’.

supplementary crystallographic information

Comment

As a part of a more general study of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supramolecular reagents (Portalone et al., 1999; Portalone & Colapietro, 2007a, b), this work is a continuation of our studies on crystal adducts of DNA/RNA pyrimidine bases coupled with amino-derivatives of aromatic N-heterocycles via multiple hydrogen bonds to mimic the base-pairing of nucleic acids.

The asymmetric unit of (I) comprises a planar independent molecule of acetoguanamine hydrogen-bonded to N,N-dimethylformamide (DMF) (Fig. 1). A comparison of the molecular geometry of acetoguanamine with that reported for the corresponding molecule in the 1:1 monohydrated molecular adduct formed between acetoguanaminium chloride and acetoguanamine (Portalone & Colapietro, 2007a) shows that the corresponding bond lengths and angles are equal within experimental error. An analysis of the crystal packing of (I) shows (Table 1) that adjacent molecules of acetoguanamine are linked into ribbons (Fig. 2) by three independent intermolecular N—H···N hydrogen bonds between NH moieties and N atoms of the heterocyclic ring to form hydrogen-bonded rings (one centrosymmetric) of descriptor R22(8) (Etter et al., 1990; Bernstein et al., 1995; Motherwell et al., 1999). These hydrogen bonds that lead to two-dimensional arrays in the ab plane are bridged by DMF molecules via N–H ···O interactions forming C11(3) chains.

Experimental

Acetoguanamine (0.1 mmol, Sigma Aldrich at 98% purity) was dissolved in N,N-dimethylformamide (9 ml) and heated under reflux for 3 h. After cooling the solution to an ambient temperature, crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvent after a few days.

Refinement

All H atoms were found in a difference map, positioned with idealized geometry, and refined isotropically using a riding model (N–H = 0.82–0.89 Å, C–H = 0.93–0.97 Å). Their Uiso values were kept equal to 1.2Ueq(N), 1.5Ueq(C), 2.0Ueq(C) of the solvent molecule. In the absence of significant anomalous scattering, Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of (I), showing the atom-labelling scheme. Displacements ellipsoids are at the 50% probability level.
Fig. 2.
Crystal packing diagram for (I) viewed approximately down the c-axis. All atoms are shown as small spheres of arbitrary radii. For the sake of clarity, only H atoms involved in hydrogen bonding are shown. Hydrogen bonding is indicated by dashed lines. ...

Crystal data

C4H7N5·C3H7NOF000 = 1696
Mr = 198.24Dx = 1.230 Mg m3
Orthorhombic, Fdd2Mo Kα radiation λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 11018 reflections
a = 25.548 (2) Åθ = 3.0–25.6º
b = 23.0626 (19) ŵ = 0.09 mm1
c = 7.2689 (9) ÅT = 298 (2) K
V = 4282.8 (7) Å3Tablets, colourless
Z = 160.15 × 0.14 × 0.14 mm

Data collection

Oxford Diffraction Xcalibur S CCD diffractometer1127 independent reflections
Radiation source: Enhance (Mo) X-ray source698 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.064
Detector resolution: 16.0696 pixels mm-1θmax = 25.9º
T = 298(2) Kθmin = 3.0º
ω and [var phi] scansh = −31→31
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2006)k = −27→28
Tmin = 0.985, Tmax = 0.990l = −8→8
27177 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.127  w = 1/[σ2(Fo2) + (0.0841P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
1127 reflectionsΔρmax = 0.15 e Å3
132 parametersΔρmin = −0.14 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.63312 (11)0.10945 (11)0.5765 (4)0.0495 (9)
C20.58170 (12)0.10315 (14)0.6030 (6)0.0431 (9)
N30.55453 (10)0.05414 (12)0.5797 (4)0.0447 (8)
C40.58328 (13)0.00862 (13)0.5267 (5)0.0416 (9)
N50.63552 (11)0.01049 (12)0.4927 (5)0.0471 (8)
C60.65836 (13)0.06118 (15)0.5210 (5)0.0463 (9)
N60.55533 (11)0.15017 (12)0.6581 (5)0.0592 (10)
H6A0.57210.18360.67530.071*
H6B0.52100.148080.67760.071*
N70.55992 (11)−0.04163 (11)0.5010 (5)0.0598 (10)
H7A0.5282−0.044630.51750.072*
H7B0.5771−0.07000.46840.072*
C80.71557 (14)0.06575 (18)0.4923 (7)0.0710 (13)
H8A0.73190.03290.53950.106*
H8B0.72820.09850.55220.106*
H8C0.72260.06870.36710.106*
O10.44754 (15)0.1783 (2)0.7397 (7)0.1196 (16)
N80.36343 (14)0.20435 (17)0.7802 (5)0.0738 (11)
C90.4016 (3)0.1667 (3)0.7697 (9)0.113 (2)
H90.39310.12790.78640.226*
C100.3107 (3)0.1868 (4)0.8156 (11)0.160 (4)
H10A0.29050.18910.70280.319*
H10B0.29540.21220.90740.319*
H10C0.31050.14720.86060.319*
C110.3722 (4)0.2647 (2)0.7568 (11)0.140 (3)
H11A0.38390.28130.87220.279*
H11B0.33990.28330.71890.279*
H11C0.39880.27060.66340.279*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0426 (16)0.0337 (16)0.072 (2)−0.0041 (13)−0.0033 (15)−0.0092 (16)
C20.0385 (18)0.0307 (18)0.060 (2)−0.0004 (15)−0.0048 (19)−0.0032 (16)
N30.0391 (14)0.0311 (14)0.0638 (19)−0.0001 (13)−0.0004 (15)−0.0059 (14)
C40.0400 (19)0.0273 (17)0.057 (2)−0.0005 (14)0.0046 (18)−0.0045 (15)
N50.0406 (16)0.0310 (15)0.070 (2)−0.0008 (12)−0.0009 (16)−0.0103 (15)
C60.0399 (17)0.0381 (19)0.061 (2)−0.0037 (16)−0.0027 (18)−0.0038 (18)
N60.0457 (17)0.0298 (15)0.102 (3)0.0009 (13)−0.0020 (18)−0.0156 (17)
N70.0414 (16)0.0319 (15)0.106 (3)−0.0013 (13)0.0115 (19)−0.0126 (18)
C80.042 (2)0.062 (2)0.108 (4)−0.0064 (19)0.006 (3)−0.019 (3)
O10.063 (2)0.153 (4)0.143 (4)0.013 (2)−0.005 (3)−0.037 (3)
N80.070 (2)0.072 (3)0.079 (3)0.006 (2)0.0083 (19)−0.012 (2)
C90.133 (6)0.109 (5)0.096 (5)0.018 (5)−0.008 (4)−0.017 (4)
C100.101 (5)0.266 (10)0.112 (5)−0.053 (6)0.036 (4)−0.050 (6)
C110.242 (9)0.073 (4)0.104 (5)−0.002 (4)0.001 (5)0.008 (4)

Geometric parameters (Å, °)

N1—C21.336 (4)C8—H8B0.9300
N1—C61.348 (5)C8—H8C0.9300
C2—N31.337 (4)O1—C91.223 (7)
C2—N61.338 (4)N8—C91.307 (7)
N3—C41.338 (4)N8—C111.419 (6)
C4—N71.317 (4)N8—C101.429 (7)
C4—N51.358 (4)C9—H90.9300
N5—C61.323 (4)C10—H10A0.9700
C6—C81.480 (5)C10—H10B0.9700
N6—H6A0.8907C10—H10C0.9700
N6—H6B0.8907C11—H11A0.9700
N7—H7A0.8226C11—H11B0.9700
N7—H7B0.8226C11—H11C0.9700
C8—H8A0.9300
C2—N1—C6115.1 (3)C6—C8—H8C109.5
N1—C2—N3125.8 (3)H8A—C8—H8C109.5
N1—C2—N6116.8 (3)H8B—C8—H8C109.5
N3—C2—N6117.5 (3)C9—N8—C11121.7 (6)
C2—N3—C4114.5 (3)C9—N8—C10121.7 (6)
N7—C4—N3118.9 (3)C11—N8—C10116.6 (6)
N7—C4—N5116.6 (3)O1—C9—N8125.6 (7)
N3—C4—N5124.5 (3)O1—C9—H9117.2
C6—N5—C4115.7 (3)N8—C9—H9117.2
N5—C6—N1124.4 (3)N8—C10—H10A109.5
N5—C6—C8118.5 (3)N8—C10—H10B109.5
N1—C6—C8117.1 (3)H10A—C10—H10B109.5
C2—N6—H6A120.0N8—C10—H10C109.5
C2—N6—H6B120.0H10A—C10—H10C109.5
H6A—N6—H6B120.0H10B—C10—H10C109.5
C4—N7—H7A120.0N8—C11—H11A109.5
C4—N7—H7B120.0N8—C11—H11B109.5
H7A—N7—H7B120.0H11A—C11—H11B109.5
C6—C8—H8A109.5N8—C11—H11C109.5
C6—C8—H8B109.5H11A—C11—H11C109.5
H8A—C8—H8B109.5H11B—C11—H11C109.5
C6—N1—C2—N30.2 (6)N3—C4—N5—C62.1 (5)
C6—N1—C2—N6180.0 (4)C4—N5—C6—N1−1.2 (6)
N1—C2—N3—C40.6 (6)C4—N5—C6—C8178.1 (4)
N6—C2—N3—C4−179.2 (3)C2—N1—C6—N50.2 (6)
C2—N3—C4—N7179.7 (4)C2—N1—C6—C8−179.2 (4)
C2—N3—C4—N5−1.8 (5)C11—N8—C9—O10.0 (10)
N7—C4—N5—C6−179.4 (4)C10—N8—C9—O1179.9 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N6—H6B···O10.892.052.890 (5)157
N6—H6A···N5i0.892.133.022 (4)174
N7—H7B···N1ii0.822.182.989 (4)168
N7—H7A···N3iii0.822.172.993 (4)176

Symmetry codes: (i) −x+5/4, y+1/4, z+1/4; (ii) −x+5/4, y−1/4, z−1/4; (iii) −x+1, −y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2285).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (1999). Acta Cryst. B55, 1044–1056. [PubMed]
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Portalone, G., Bencivenni, L., Colapietro, M., Pieretti, A. & Ramondo, F. (1999). Acta Chem. Scand.53, 57–68.
  • Portalone, G. & Colapietro, M. (2007a). Acta Cryst. C63, o655–o658. [PubMed]
  • Portalone, G. & Colapietro, M. (2007b). Acta Cryst. C63, o181–o184. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography