PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1152–m1153.
Published online 2008 August 13. doi:  10.1107/S1600536808024963
PMCID: PMC2960526

Bis[tris­(ethane-1,2-diamine)nickel(II)] octa­cyanidomolybdate(IV) dihydrate

Abstract

The title complex, [NiII(C2H8N2)3]2[MoIV(CN)8]·2H2O, crystallized from a mixture of ethane-1,2-diamine (en), octa­cyano­molybdate(IV), [Mo(CN)8]4−, and the transition metal ion Ni2+. In the crystal structure, the Mo polyhedron has a square-anti­prismatic shape, while the geometry around the Ni atom is distorted octa­hedral. The complex ions and water mol­ecules are linked by hydrogen bonds.

Related literature

For information on molybdenum–octa­cyanido complexes see: Mathonière et al. (2005 [triangle]); Przychodzeń et al. (2004 [triangle]); Zhou et al. (2008 [triangle]). For related literature, see: Chang et al. (2002 [triangle]); Leipoldt et al. (1974 [triangle]); Li et al. (2003 [triangle]); Podgajny et al. (2001 [triangle]); Przychodzeń et al. (2006 [triangle]); Sieklucka et al. (2002 [triangle], 2005 [triangle]); Withers et al. (2005 [triangle]); Yuan et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1152-scheme1.jpg

Experimental

Crystal data

  • [Ni(C2H8N2)3]2[Mo(CN)8]·2H2O
  • M r = 818.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1152-efi1.jpg
  • a = 10.1765 (3) Å
  • b = 12.2178 (2) Å
  • c = 15.8932 (3) Å
  • β = 106.683 (1)°
  • V = 1892.89 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.36 mm−1
  • T = 153 (2) K
  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Rigaku R-AXIS Spider diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.67, T max = 0.72
  • 15991 measured reflections
  • 6779 independent reflections
  • 6292 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.122
  • S = 1.09
  • 6779 reflections
  • 433 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.92 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2876 Friedel pairs
  • Flack parameter: 0.024 (19)

Data collection: RAPID-AUTO (Rigaku, 2004 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024963/br2077sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024963/br2077Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work is supported by the University Natural Science Foundation of Jiangsu Province (No. 07KJB150030).

supplementary crystallographic information

Comment

Recently, there is a continuing interest in donor-acceptor systems based on octacyano-complexes [M(CN)8]3-/4- (M = Mo, W and Nb) as building blocks for constructing either ion-paired or cyano-bridged bimetallic assemblies because of their unique structures and physicochemical properties (Przychodzeń et al., 2006; Sieklucka et al., 2005; Sieklucka et al., 2002). While it was very difficult to crystallize octacyanometalate networks by slow diffusion or hydrothermal methods, we began to explore the utility of amine ligands to direct and limit the number of cyano linkages formed between transition metal centers. Bidentate amines such as 1,2-diaminoethane (en), 1,2-diaminopropane (pn), and 1,3-propanediamine (tn), are found extensive use in the preparation of so-called 'expanded Prussian blue solids', but only several octacyanometalate derivatives are known up to date (Li et al., 2003; Podgajny et al., 2001; Withers et al., 2005; Chang et al., 2002; Yuan et al., 2000).

Each Mo atom is eight-coordinated, where all eight cyanide groups are terminal ones (Fig. 1). The Mo(IV) polyhedron has a square-antiprismatic shape (D4d symmetry). The octacyanomolybdate moiety [Mo(CN)8]4- is characterized by the average Mo—C distance of 2.161 Å and practically linear Mo—CN bonds with the bond angles ranging from 176.8 (4)° to 179.6 (4)°. Crystal structure data of octacyanometalate moiety Mo(IV) (SAPR-8, D4d symmetry) is in very good agreement with the great majority of mononuclear [Mo(CN)8]4- complexes (Zhou et al., 2008; Mathonière et al., 2005; Przychodzeń et al., 2004).

In [Ni(en)3]2+cation, the geometry around Ni(1) is octahedron (D3 symmetry). The average Ni(1)—N bond distance for the [Ni(1)(en)3]2+centers is 2.122 Å. The octahedral environment of [Ni(en)3]2+is comparable with those found for other Ni complexes previously reported with amine and polyamine ligands (Withers et al., 2005; Chang et al., 2002; Yuan et al., 2000).

The striking aspect of the structure lies in the coordination environment of [Ni(en)3]2+cation. Each Ni atom chelates to three en molecules, and no positions are provided for CN groups of [Mo(CN)8]4- thus avoiding the formation of cyano-bridge. Packing diagram of the title complex is shown in figure 2. There are additional water molecules (O1, O2, O3, O4, O5) in the structure, which might be connected via difference map.

Experimental

For the preparation of the title complex, pale yellow crystals of suitable for X-ray single-crystal structure determination were grown at room temperature by slow diffusion of an aqueous solution of NiCl2.H2O (0.2 mmol) and ethane-1,2-amine (en, 0.6 mmol) and anaqueous solution of K4[Mo(CN)8].2H2O (Leipoldt et al., 1974) (0.1 mmol) for six weeks. The resulting crystals were collected, washed with H2O and dried in air. Anal. Calc. for C20H52MoN20Ni2O2: C, 29.36; H, 6.41; N, 34.24; Ni, 14.35; Mo, 11.73. Found: C, 29.50; H, 6.38; N, 34.11; Ni, 14.40; Mo, 11.77.

Refinement

All non-H atoms were refined anisotropically. The H atoms on nitrogen atoms were located from the difference Fourier maps, and the H atoms of water molecules were not located in the difference map and placed in theory positions.

Figures

Fig. 1.
ORTEP view of the title complex showing 30% probability thermal motion ellipsoid. Hydrogen atoms have been omitted for clarity.
Fig. 2.
Packing diagram of the title complex. Water molecules are omitted for clarity.

Crystal data

[Ni(C2H8N2)3]2[Mo(CN)8]·2H2OF000 = 852
Mr = 818.18Dx = 1.435 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4517 reflections
a = 10.1765 (3) Åθ = 2.1–25.5º
b = 12.2178 (2) ŵ = 1.36 mm1
c = 15.8932 (3) ÅT = 153 (2) K
β = 106.6830 (10)ºPale, yellow
V = 1892.89 (7) Å30.30 × 0.26 × 0.24 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer6779 independent reflections
Radiation source: sealed tube6292 reflections with I > \2s(I)
Monochromator: graphiteRint = 0.048
T = 153(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 3.2º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −12→12
Tmin = 0.67, Tmax = 0.72k = −15→13
15991 measured reflectionsl = −19→19

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052  w = 1/[σ2(Fo2) + (0.07P)2 + 1.99P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.48 e Å3
6779 reflectionsΔρmin = −0.92 e Å3
433 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 2876 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.024 (19)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.7021 (6)0.2552 (5)0.9316 (4)0.0195 (12)
C20.8354 (6)0.2524 (6)0.7410 (4)0.0241 (13)
C30.8353 (6)0.3887 (5)0.8634 (4)0.0189 (12)
C40.6661 (7)0.4211 (6)0.7016 (4)0.0278 (14)
C50.5555 (6)0.4260 (6)0.8268 (4)0.0199 (12)
C60.5563 (6)0.2339 (6)0.6619 (4)0.0289 (14)
C70.4715 (7)0.2262 (5)0.7999 (4)0.0264 (14)
C80.7056 (7)0.1166 (6)0.8070 (4)0.0287 (14)
C90.0508 (5)0.2749 (6)0.1559 (4)0.0248 (14)
H9C−0.01610.21620.13100.030*
H9D0.01060.32350.19190.030*
C100.1825 (7)0.2257 (6)0.2122 (4)0.0271 (14)
H10C0.24690.28450.24060.032*
H10D0.16380.17980.25880.032*
C110.1076 (6)0.0854 (5)−0.1054 (4)0.0243 (13)
H11C0.11460.1382−0.15110.029*
H11D0.04420.0259−0.13380.029*
C120.2488 (7)0.0386 (5)−0.0584 (4)0.0253 (14)
H12C0.2398−0.0189−0.01650.030*
H12D0.28960.0050−0.10170.030*
C130.2762 (8)0.4470 (6)−0.0335 (5)0.0325 (15)
H13C0.21830.4868−0.00320.039*
H13D0.29010.4949−0.08050.039*
C140.4120 (7)0.4211 (6)0.0306 (6)0.0356 (17)
H14C0.47350.3876−0.00050.043*
H14D0.45550.48910.05940.043*
C150.0575 (8)0.5073 (7)0.6690 (5)0.0371 (17)
H15C−0.01420.46910.62290.045*
H15D0.01810.52760.71700.045*
C160.1786 (7)0.4333 (7)0.7037 (5)0.0345 (16)
H16C0.23310.46020.76200.041*
H16D0.14530.35900.71170.041*
C170.3069 (7)0.4275 (7)0.4299 (5)0.0364 (17)
H17C0.35470.41930.38420.044*
H17D0.30460.35510.45750.044*
C180.3033 (7)0.8036 (6)0.5511 (5)0.0324 (15)
H18C0.24750.84420.58250.039*
H18D0.33320.85630.51290.039*
C190.4256 (7)0.7580 (6)0.6159 (5)0.0330 (17)
H19C0.46030.81260.66310.040*
H19D0.49810.74600.58670.040*
C200.1658 (7)0.4669 (7)0.3898 (5)0.0370 (17)
H20C0.11420.41260.34660.044*
H20D0.16800.53660.35860.044*
Mo10.66541 (4)0.28850 (4)0.79163 (3)0.01679 (12)
N10.7199 (6)0.2377 (5)1.0040 (4)0.0301 (12)
N20.9261 (6)0.2312 (6)0.7138 (4)0.0340 (13)
N30.9209 (5)0.4433 (5)0.9004 (4)0.0268 (12)
N40.6622 (7)0.4940 (6)0.6546 (4)0.0396 (15)
N50.4988 (6)0.5007 (5)0.8419 (4)0.0284 (12)
N60.5011 (6)0.2020 (7)0.5923 (4)0.0424 (17)
N70.3659 (6)0.1947 (6)0.8043 (4)0.0324 (14)
N80.7278 (6)0.0243 (5)0.8114 (4)0.0334 (13)
N90.0806 (5)0.3382 (4)0.0843 (3)0.0198 (10)
H9A0.11970.40440.10510.024*
H9B0.00110.35110.04010.024*
N100.2435 (5)0.1588 (5)0.1566 (3)0.0233 (11)
H10A0.20060.09180.14630.028*
H10B0.33510.14740.18440.028*
N110.0556 (6)0.1416 (5)−0.0374 (3)0.0250 (12)
H11A0.03190.0911−0.00140.030*
H11B−0.02010.1836−0.06370.030*
N120.3389 (5)0.1272 (4)−0.0107 (3)0.0205 (11)
H12A0.38090.1614−0.04760.025*
H12B0.40590.09830.03580.025*
N130.2079 (6)0.3480 (4)−0.0718 (4)0.0240 (11)
H13A0.25090.3175−0.10970.029*
H13B0.11790.3619−0.10200.029*
N140.3906 (5)0.3450 (5)0.0966 (4)0.0260 (11)
H14A0.37340.38330.14210.031*
H14B0.46790.30310.11890.031*
N150.1003 (6)0.6013 (5)0.6341 (4)0.0349 (14)
H15A0.13930.64910.67910.042*
H15B0.02500.63520.59710.042*
N160.2683 (6)0.4264 (5)0.6456 (4)0.0305 (13)
H16A0.24690.36470.61110.037*
H16B0.35830.42100.67890.037*
N170.0968 (5)0.4836 (5)0.4593 (4)0.0298 (13)
H17A0.07280.41750.47840.036*
H17B0.01880.52520.43840.036*
N180.3814 (5)0.5073 (5)0.4973 (4)0.0286 (13)
H18A0.41370.56420.47090.034*
H18B0.45500.47380.53630.034*
N190.2186 (6)0.7195 (6)0.4965 (4)0.0381 (15)
H19A0.24330.71160.44550.046*
H19B0.12800.74050.48170.046*
N200.4008 (6)0.6538 (6)0.6563 (4)0.0379 (15)
H20A0.37530.66770.70630.046*
H20B0.47980.61260.67160.046*
Ni10.22011 (7)0.24205 (6)0.03593 (5)0.01682 (16)
Ni20.24281 (8)0.56721 (7)0.56448 (5)0.02290 (19)
O10.1546 (14)0.8476 (13)0.7207 (9)0.043 (5)0.395 (18)
H1B0.23450.84880.75680.052*0.395 (18)
H1C0.15000.89440.68040.052*0.395 (18)
O20.7361 (13)0.6346 (12)0.5413 (9)0.041 (5)0.410 (18)
H2D0.67250.65870.56120.050*0.410 (18)
H2A0.74180.67430.49860.050*0.410 (18)
O30.3445 (12)0.7066 (11)0.8378 (7)0.032 (4)0.392 (16)
H3B0.27210.74500.82890.038*0.392 (16)
H3C0.33390.64670.86230.038*0.392 (16)
O40.1011 (13)0.2511 (13)0.5281 (9)0.044 (5)0.399 (17)
H4A0.10790.19290.55830.052*0.399 (17)
H4C0.13160.23970.48450.052*0.399 (17)
O50.1340 (13)0.1064 (12)0.6782 (9)0.042 (4)0.404 (17)
H5A0.07360.12210.70370.050*0.404 (17)
H5C0.21340.11610.71360.050*0.404 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.023 (3)0.018 (3)0.018 (3)−0.005 (2)0.007 (2)0.000 (2)
C20.022 (3)0.021 (3)0.027 (3)−0.008 (2)0.004 (2)0.001 (2)
C30.027 (3)0.010 (3)0.020 (3)−0.002 (2)0.007 (2)0.007 (2)
C40.034 (3)0.026 (4)0.021 (3)−0.006 (3)0.003 (3)0.010 (3)
C50.015 (2)0.024 (3)0.022 (3)−0.002 (2)0.007 (2)0.005 (2)
C60.026 (3)0.036 (4)0.024 (3)−0.014 (3)0.004 (3)0.008 (3)
C70.031 (3)0.019 (3)0.028 (3)−0.008 (3)0.006 (3)0.004 (3)
C80.038 (4)0.026 (4)0.024 (3)0.007 (3)0.013 (3)0.006 (3)
C90.013 (2)0.037 (4)0.029 (3)0.001 (2)0.013 (2)0.009 (3)
C100.040 (4)0.024 (4)0.020 (3)0.007 (3)0.012 (3)0.007 (3)
C110.029 (3)0.023 (3)0.021 (3)−0.002 (2)0.007 (2)−0.007 (2)
C120.036 (3)0.017 (3)0.026 (3)0.002 (2)0.014 (3)0.002 (2)
C130.039 (4)0.024 (4)0.041 (4)−0.006 (3)0.021 (3)0.002 (3)
C140.025 (3)0.027 (4)0.062 (5)−0.006 (3)0.023 (3)0.000 (3)
C150.042 (4)0.038 (4)0.037 (4)0.008 (3)0.020 (3)0.013 (3)
C160.032 (4)0.036 (4)0.038 (4)−0.008 (3)0.014 (3)0.009 (3)
C170.034 (4)0.042 (4)0.035 (4)0.015 (3)0.014 (3)−0.011 (3)
C180.043 (4)0.021 (4)0.034 (3)0.001 (3)0.013 (3)−0.010 (3)
C190.032 (3)0.030 (4)0.038 (4)−0.016 (3)0.010 (3)−0.022 (3)
C200.031 (3)0.045 (5)0.031 (4)0.003 (3)0.001 (3)−0.009 (3)
Mo10.0170 (2)0.0178 (2)0.0146 (2)−0.0064 (2)0.00296 (16)0.0014 (2)
N10.044 (3)0.021 (3)0.023 (3)−0.003 (3)0.006 (2)0.007 (2)
N20.027 (3)0.042 (4)0.038 (3)−0.014 (3)0.016 (2)−0.009 (3)
N30.026 (3)0.023 (3)0.029 (3)0.003 (2)0.004 (2)−0.001 (2)
N40.039 (3)0.049 (4)0.030 (3)−0.013 (3)0.009 (3)0.007 (3)
N50.028 (3)0.030 (3)0.028 (3)−0.005 (2)0.009 (2)−0.003 (2)
N60.028 (3)0.073 (5)0.024 (3)−0.015 (3)0.003 (2)−0.003 (3)
N70.025 (3)0.047 (4)0.028 (3)−0.020 (3)0.011 (2)−0.007 (3)
N80.045 (3)0.023 (3)0.036 (3)−0.005 (3)0.018 (3)0.005 (2)
N90.028 (3)0.014 (2)0.020 (3)0.003 (2)0.011 (2)0.000 (2)
N100.027 (3)0.020 (3)0.024 (3)0.001 (2)0.009 (2)−0.003 (2)
N110.028 (3)0.026 (3)0.020 (3)−0.001 (2)0.007 (2)−0.006 (2)
N120.020 (2)0.017 (3)0.024 (3)0.003 (2)0.005 (2)−0.003 (2)
N130.032 (3)0.019 (3)0.026 (3)0.002 (2)0.017 (2)0.004 (2)
N140.014 (2)0.028 (3)0.036 (3)−0.003 (2)0.007 (2)−0.005 (2)
N150.041 (3)0.036 (4)0.032 (3)−0.014 (3)0.018 (3)−0.007 (3)
N160.025 (3)0.042 (4)0.021 (3)0.000 (2)−0.001 (2)0.000 (2)
N170.017 (2)0.037 (3)0.030 (3)0.000 (2)−0.001 (2)−0.005 (2)
N180.010 (2)0.048 (4)0.028 (3)0.002 (2)0.007 (2)−0.007 (3)
N190.038 (3)0.047 (4)0.028 (3)−0.001 (3)0.006 (3)0.006 (3)
N200.035 (3)0.060 (5)0.020 (3)−0.011 (3)0.011 (3)−0.014 (3)
Ni10.0161 (3)0.0141 (3)0.0214 (4)0.0003 (3)0.0072 (3)−0.0002 (3)
Ni20.0217 (4)0.0281 (4)0.0188 (4)−0.0018 (3)0.0057 (3)−0.0039 (3)
O10.038 (7)0.048 (9)0.032 (7)0.007 (6)−0.008 (6)0.005 (6)
O20.032 (6)0.044 (9)0.034 (7)0.002 (5)−0.014 (5)0.015 (6)
O30.029 (6)0.046 (8)0.024 (6)0.017 (5)0.014 (5)0.006 (5)
O40.038 (7)0.044 (9)0.044 (8)−0.001 (6)0.003 (6)0.005 (6)
O50.037 (7)0.051 (9)0.038 (7)−0.012 (6)0.012 (6)−0.013 (6)

Geometric parameters (Å, °)

C1—N11.133 (8)C19—N201.479 (10)
C1—Mo12.185 (6)C19—H19C0.9900
C2—N21.155 (9)C19—H19D0.9900
C2—Mo12.153 (6)C20—N171.483 (9)
C3—N31.121 (8)C20—H20C0.9900
C3—Mo12.158 (6)C20—H20D0.9900
C4—N41.156 (9)N9—Ni12.148 (5)
C4—Mo12.162 (6)N9—H9A0.9200
C5—N51.142 (9)N9—H9B0.9200
C5—Mo12.178 (7)N10—Ni12.123 (6)
C6—N61.156 (9)N10—H10A0.9200
C6—Mo12.148 (7)N10—H10B0.9200
C7—N71.162 (9)N11—Ni12.132 (5)
C7—Mo12.154 (6)N11—H11A0.9200
C8—N81.148 (9)N11—H11B0.9200
C8—Mo12.141 (7)N12—Ni12.120 (5)
C9—N91.478 (8)N12—H12A0.9200
C9—C101.506 (8)N12—H12B0.9200
C9—H9C0.9900N13—Ni12.121 (5)
C9—H9D0.9900N13—H13A0.9200
C10—N101.466 (8)N13—H13B0.9200
C10—H10C0.9900N14—Ni12.135 (5)
C10—H10D0.9900N14—H14A0.9200
C11—N111.498 (8)N14—H14B0.9200
C11—C121.528 (9)N15—Ni22.103 (6)
C11—H11C0.9900N15—H15A0.9200
C11—H11D0.9900N15—H15B0.9200
C12—N121.479 (8)N16—Ni22.120 (6)
C12—H12C0.9900N16—H16A0.9200
C12—H12D0.9900N16—H16B0.9200
C13—N131.440 (9)N17—Ni22.149 (5)
C13—C141.496 (11)N17—H17A0.9200
C13—H13C0.9900N17—H17B0.9200
C13—H13D0.9900N18—Ni22.129 (5)
C14—N141.465 (9)N18—H18A0.9200
C14—H14C0.9900N18—H18B0.9200
C14—H14D0.9900N19—Ni22.131 (7)
C15—N151.399 (9)N19—H19A0.9200
C15—C161.500 (10)N19—H19B0.9200
C15—H15C0.9900N20—Ni22.118 (6)
C15—H15D0.9900N20—H20A0.9200
C16—N161.476 (9)N20—H20B0.9200
C16—H16C0.9900O1—H1B0.8500
C16—H16D0.9900O1—H1C0.8501
C17—C201.474 (10)O2—H2D0.8499
C17—N181.485 (9)O2—H2A0.8500
C17—H17C0.9900O3—H3B0.8500
C17—H17D0.9900O3—H3C0.8500
C18—N191.457 (9)O4—H4A0.8499
C18—C191.479 (10)O4—H4C0.8500
C18—H18C0.9900O5—H5A0.8500
C18—H18D0.9900O5—H5C0.8500
N1—C1—Mo1179.4 (5)C9—N9—Ni1107.0 (4)
N2—C2—Mo1178.8 (6)C9—N9—H9A110.3
N3—C3—Mo1177.9 (5)Ni1—N9—H9A110.3
N4—C4—Mo1177.1 (7)C9—N9—H9B110.3
N5—C5—Mo1176.7 (6)Ni1—N9—H9B110.3
N6—C6—Mo1177.7 (7)H9A—N9—H9B108.6
N7—C7—Mo1178.6 (6)C10—N10—Ni1108.7 (4)
N8—C8—Mo1176.8 (6)C10—N10—H10A110.0
N9—C9—C10108.7 (5)Ni1—N10—H10A110.0
N9—C9—H9C109.9C10—N10—H10B110.0
C10—C9—H9C109.9Ni1—N10—H10B110.0
N9—C9—H9D109.9H10A—N10—H10B108.3
C10—C9—H9D109.9C11—N11—Ni1105.9 (4)
H9C—C9—H9D108.3C11—N11—H11A110.6
N10—C10—C9108.9 (5)Ni1—N11—H11A110.6
N10—C10—H10C109.9C11—N11—H11B110.6
C9—C10—H10C109.9Ni1—N11—H11B110.6
N10—C10—H10D109.9H11A—N11—H11B108.7
C9—C10—H10D109.9C12—N12—Ni1109.4 (4)
H10C—C10—H10D108.3C12—N12—H12A109.8
N11—C11—C12107.2 (5)Ni1—N12—H12A109.8
N11—C11—H11C110.3C12—N12—H12B109.8
C12—C11—H11C110.3Ni1—N12—H12B109.8
N11—C11—H11D110.3H12A—N12—H12B108.2
C12—C11—H11D110.3C13—N13—Ni1105.2 (4)
H11C—C11—H11D108.5C13—N13—H13A110.7
N12—C12—C11109.5 (5)Ni1—N13—H13A110.7
N12—C12—H12C109.8C13—N13—H13B110.7
C11—C12—H12C109.8Ni1—N13—H13B110.7
N12—C12—H12D109.8H13A—N13—H13B108.8
C11—C12—H12D109.8C14—N14—Ni1108.6 (4)
H12C—C12—H12D108.2C14—N14—H14A110.0
N13—C13—C14110.4 (6)Ni1—N14—H14A110.0
N13—C13—H13C109.6C14—N14—H14B110.0
C14—C13—H13C109.6Ni1—N14—H14B110.0
N13—C13—H13D109.6H14A—N14—H14B108.3
C14—C13—H13D109.6C15—N15—Ni2112.7 (5)
H13C—C13—H13D108.1C15—N15—H15A109.0
N14—C14—C13108.9 (5)Ni2—N15—H15A109.0
N14—C14—H14C109.9C15—N15—H15B109.0
C13—C14—H14C109.9Ni2—N15—H15B109.0
N14—C14—H14D109.9H15A—N15—H15B107.8
C13—C14—H14D109.9C16—N16—Ni2110.1 (5)
H14C—C14—H14D108.3C16—N16—H16A109.6
N15—C15—C16108.9 (6)Ni2—N16—H16A109.6
N15—C15—H15C109.9C16—N16—H16B109.6
C16—C15—H15C109.9Ni2—N16—H16B109.6
N15—C15—H15D109.9H16A—N16—H16B108.1
C16—C15—H15D109.9C20—N17—Ni2106.0 (4)
H15C—C15—H15D108.3C20—N17—H17A110.5
N16—C16—C15113.3 (6)Ni2—N17—H17A110.5
N16—C16—H16C108.9C20—N17—H17B110.5
C15—C16—H16C108.9Ni2—N17—H17B110.5
N16—C16—H16D108.9H17A—N17—H17B108.7
C15—C16—H16D108.9C17—N18—Ni2108.2 (4)
H16C—C16—H16D107.7C17—N18—H18A110.1
C20—C17—N18109.3 (6)Ni2—N18—H18A110.1
C20—C17—H17C109.8C17—N18—H18B110.1
N18—C17—H17C109.8Ni2—N18—H18B110.1
C20—C17—H17D109.8H18A—N18—H18B108.4
N18—C17—H17D109.8C18—N19—Ni2110.6 (4)
H17C—C17—H17D108.3C18—N19—H19A109.5
N19—C18—C19112.6 (6)Ni2—N19—H19A109.5
N19—C18—H18C109.1C18—N19—H19B109.5
C19—C18—H18C109.1Ni2—N19—H19B109.5
N19—C18—H18D109.1H19A—N19—H19B108.1
C19—C18—H18D109.1C19—N20—Ni2108.7 (4)
H18C—C18—H18D107.8C19—N20—H20A109.9
C18—C19—N20114.4 (6)Ni2—N20—H20A109.9
C18—C19—H19C108.7C19—N20—H20B109.9
N20—C19—H19C108.7Ni2—N20—H20B109.9
C18—C19—H19D108.7H20A—N20—H20B108.3
N20—C19—H19D108.7N12—Ni1—N1391.7 (2)
H19C—C19—H19D107.6N12—Ni1—N1094.1 (2)
C17—C20—N17109.5 (6)N13—Ni1—N10170.7 (2)
C17—C20—H20C109.8N12—Ni1—N1182.2 (2)
N17—C20—H20C109.8N13—Ni1—N1193.2 (2)
C17—C20—H20D109.8N10—Ni1—N1194.9 (2)
N17—C20—H20D109.8N12—Ni1—N1494.4 (2)
H20C—C20—H20D108.2N13—Ni1—N1481.8 (2)
C8—Mo1—C680.5 (3)N10—Ni1—N1490.5 (2)
C8—Mo1—C272.2 (3)N11—Ni1—N14173.8 (2)
C6—Mo1—C280.0 (2)N12—Ni1—N9171.5 (2)
C8—Mo1—C778.1 (3)N13—Ni1—N993.6 (2)
C6—Mo1—C773.7 (2)N10—Ni1—N981.6 (2)
C2—Mo1—C7143.0 (3)N11—Ni1—N990.8 (2)
C8—Mo1—C3113.5 (2)N14—Ni1—N992.9 (2)
C6—Mo1—C3143.0 (2)N15—Ni2—N2092.3 (2)
C2—Mo1—C372.9 (2)N15—Ni2—N1679.8 (3)
C7—Mo1—C3141.0 (2)N20—Ni2—N1692.9 (3)
C8—Mo1—C4140.7 (3)N15—Ni2—N18171.3 (3)
C6—Mo1—C472.3 (3)N20—Ni2—N1892.1 (2)
C2—Mo1—C475.5 (3)N16—Ni2—N1892.4 (2)
C7—Mo1—C4118.8 (3)N15—Ni2—N1995.6 (3)
C3—Mo1—C476.7 (2)N20—Ni2—N1982.4 (3)
C8—Mo1—C5145.4 (2)N16—Ni2—N19173.3 (3)
C6—Mo1—C5108.9 (3)N18—Ni2—N1992.5 (3)
C2—Mo1—C5141.3 (2)N15—Ni2—N1794.4 (2)
C7—Mo1—C573.1 (2)N20—Ni2—N17172.6 (2)
C3—Mo1—C579.6 (2)N16—Ni2—N1791.4 (2)
C4—Mo1—C572.0 (3)N18—Ni2—N1781.7 (2)
C8—Mo1—C174.3 (2)N19—Ni2—N1793.8 (2)
C6—Mo1—C1144.0 (2)H1B—O1—H1C109.5
C2—Mo1—C1114.9 (2)H2D—O2—H2A109.5
C7—Mo1—C176.4 (2)H3B—O3—H3C109.5
C3—Mo1—C172.0 (2)H4A—O4—H4C109.5
C4—Mo1—C1141.3 (2)H5A—O5—H5C109.5
C5—Mo1—C180.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N9—H9A···N8i0.922.273.140 (8)159
N9—H9B···N3ii0.922.413.179 (7)141
N10—H10A···N3iii0.922.203.111 (8)170
N10—H10B···N5iii0.922.583.252 (8)130
N11—H11A···N3iii0.922.373.219 (8)153
N12—H12A···N7iv0.922.353.141 (8)144
N12—H12B···N5iii0.922.253.126 (8)159
N13—H13A···N7iv0.922.533.434 (8)167
N13—H13B···N3ii0.922.253.056 (8)146
N14—H14A···N8i0.922.243.066 (8)149
N14—H14B···O3iii0.922.183.099 (15)176
N15—H15A···O10.922.513.290 (16)143
N15—H15B···O4v0.922.483.342 (16)156
N16—H16A···O40.922.183.023 (16)152
N17—H17A···O40.922.173.040 (17)157
N17—H17B···O5v0.922.283.097 (14)148
N18—H18A···N6i0.922.263.177 (10)178
N18—H18B···N40.922.403.216 (8)148
N19—H19A···N2i0.922.633.246 (8)125
N19—H19B···O4v0.922.303.187 (15)163
N20—H20A···O30.922.253.165 (12)172
N20—H20B···N40.922.433.306 (10)159

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x−1, y, z−1; (iii) −x+1, y−1/2, −z+1; (iv) x, y, z−1; (v) −x, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2077).

References

  • Chang, F., Sun, H.-L., Kou, H.-Z. & Gao, S. (2002). Inorg. Chem. Commun 5, 660–663.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Leipoldt, J. G., Bok, L. D. C. & Cilliers, P. J. (1974). Z. Anorg. Allg. Chem 409, 343–344.
  • Li, D.-F., Zheng, L.-M., Wang, X.-Y., Huang, J., Gao, S. & Tang, W.-X. (2003). Chem. Mater.15, 2094–2098.
  • Mathonière, C., Podgajny, R., Guionneau, P., Labrugere, C. & Sieklucka, B. (2005). Chem. Mater 17, 442–449.
  • Podgajny, R., Dromzée, Y., Kruczała, K. & Sieklucka, B. (2001). Polyhedron, 20, 685–694.
  • Przychodzeń, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234–2260.
  • Przychodzeń, P., Lewiński, K., Bałanda, M., Pełka, R., Rams, M., Wasiutyński, T., Guyard-Duhayon, C. & Sieklucka, B. (2004). Inorg. Chem.43, 2967–2974. [PubMed]
  • Rigaku (2004). RAPID-AUTO Version 3.0. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sieklucka, B., Podgajny, R., Korzeniak, T., Przychodzeń, P. & Kania, R. (2002). C. R. Chim 5, 639–649.
  • Sieklucka, B., Podgajny, R., Przychodzeń, P. & Korzeniak, T. (2005). Coord. Chem. Rev. 249, 2203–2221.
  • Withers, J. R., Ruschmann, Ch., Bojang, P., Parkin, S. & Holmes, S. M. (2005). Inorg. Chem. 44, 352–358. [PubMed]
  • Yuan, A.-H., Zou, J.-Z., Li, B.-L., Zha, Z.-G., Duan, C.-Y., Liu, Y.-J., Xu, Z. & Keizer, S. (2000). Chem. Commun 14, 1297–1298.
  • Zhou, H., Chen, Y.-Y., Yuan, A.-H. & Shen, X.-P. (2008). Inorg. Chem. Commun 11, 363–366.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography