PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1788.
Published online 2008 August 20. doi:  10.1107/S1600536808026275
PMCID: PMC2960525

(E)-4-[(5-Methyl-2-fur­yl)methyl­ene­amino]benzene­sulfonic acid

Abstract

The title compound, C12H11NO4S, is a Schiff base derived from the condensation reaction of equimolar quanti­ties of sulfamide and furfural. The mol­ecule has a trans configuration with respect to the imine C=N double bond. The N atom is involved in an inter­molecular O—H—N hydrogen bond.

Related literature

For related literature, see: Abd El Rehim et al. (2001 [triangle]); Hariharan & Urbach (1969 [triangle]); Koning & Canti­lena (1994 [triangle]); Tarafder et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1788-scheme1.jpg

Experimental

Crystal data

  • C12H11NO4S
  • M r = 265.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1788-efi1.jpg
  • a = 13.9761 (11) Å
  • b = 11.9820 (15) Å
  • c = 7.3266 (10) Å
  • β = 95.8010 (10)°
  • V = 1220.6 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 298 (2) K
  • 0.23 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.940, T max = 0.961
  • 6042 measured reflections
  • 2156 independent reflections
  • 1581 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.128
  • S = 1.05
  • 2156 reflections
  • 165 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808026275/bx2168sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026275/bx2168Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges a research grant (No. 08JZ07) from the Phytochemistry Key Laboratory of Shaanxi province.

supplementary crystallographic information

Comment

In the past decade, Schiff base compounds have been of great interest. These compounds play an important role in the development of coordination chemistry. Some of the complexes derived from Schiff bases have been found to the complexes with pharmacological and antitumor properties (Abd El Rehim et al., 2001; Koning & Cantilena, 1994; Tarafder et al., 2002). As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound, (I), is reported here.

The title compound (I) is an sulfamide derivative. The molecular structure is shown in Fig.1. All bond lengths and bond angles are in the normal ranges and comparable to those observed in a similar sulfamide Schiff base (Hariharan & Urbach 1969). The dihedral angle between the benzene ring and the furfural system is 31.9 (6)°. The torsion angles of N1—C4—C5—C6 and N1—C7—C8—C9 are 178.8 (2) ° and -174.2 (3) °, respectively. The molecular structure adopts a trans configuration about the C7 ═ N1 bond. Table 1 shows hydrogen-bond geometry and a packing diagram is shown in Fig.2.

Experimental

Sulfamide (0.1 mmol, 17.2 mg) and furfural(0.1 mmol, 9.6 mg) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 7 d, brown flake-shaped crystals of (I) were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 54%). Analysis found: C 54.28%, H 4.15% calculated for C12H11NO4S: C 54.34%, H 4.15%.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96Å and Uiso(H) = 1.2Ueq or 1.5Ueq(C/O)

Figures

Fig. 1.
The structure of the title compound in 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii.
Fig. 2.
The molecular packing of (I) viewed along the b axis. The dotted lines represent hydrogen bonds. [Symmetry code: (A)-x + 1, y, -z + 1]

Crystal data

C12H11NO4SF000 = 552
Mr = 265.28Dx = 1.444 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
a = 13.9761 (11) ÅCell parameters from 1942 reflections
b = 11.9820 (15) Åθ = 2.9–26.0º
c = 7.3266 (10) ŵ = 0.27 mm1
β = 95.8010 (10)ºT = 298 (2) K
V = 1220.6 (2) Å3Flake, brown
Z = 40.23 × 0.20 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer2156 independent reflections
Radiation source: fine-focus sealed tube1581 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −14→16
Tmin = 0.940, Tmax = 0.961k = −14→9
6042 measured reflectionsl = −8→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.128  w = 1/[σ2(Fo2) + (0.0528P)2 + 1.108P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2156 reflectionsΔρmax = 0.44 e Å3
165 parametersΔρmin = −0.44 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.70555 (16)0.62949 (19)0.4602 (3)0.0366 (6)
O10.22901 (17)0.5894 (2)0.3632 (3)0.0621 (7)
H10.24370.52890.41030.093*
O20.27564 (15)0.5149 (2)0.0717 (3)0.0596 (7)
O30.26181 (15)0.71745 (19)0.1207 (3)0.0581 (7)
O40.90263 (14)0.64516 (16)0.5898 (3)0.0409 (5)
S10.28904 (5)0.60909 (6)0.18999 (10)0.0392 (2)
C10.41271 (19)0.6154 (2)0.2690 (3)0.0323 (6)
C20.4477 (2)0.7072 (2)0.3712 (4)0.0379 (7)
H20.40620.76480.39570.045*
C30.5434 (2)0.7130 (2)0.4362 (4)0.0375 (7)
H30.56610.77360.50730.045*
C40.60639 (19)0.6285 (2)0.3960 (3)0.0321 (6)
C50.5707 (2)0.5367 (2)0.2959 (4)0.0389 (7)
H50.61200.47900.27110.047*
C60.4741 (2)0.5301 (2)0.2326 (4)0.0389 (7)
H60.45080.46830.16560.047*
C70.7498 (2)0.7230 (2)0.4686 (4)0.0381 (7)
H70.71550.78620.42700.046*
C80.8478 (2)0.7368 (2)0.5371 (4)0.0383 (7)
C90.9011 (2)0.8304 (3)0.5670 (4)0.0472 (8)
H90.88090.90330.54240.057*
C100.9932 (2)0.7963 (3)0.6424 (4)0.0476 (8)
H101.04520.84260.67810.057*
C110.9918 (2)0.6844 (3)0.6528 (4)0.0425 (7)
C121.0641 (2)0.5993 (3)0.7175 (5)0.0583 (9)
H12A1.12320.63550.76160.087*
H12B1.07500.55050.61790.087*
H12C1.04090.55680.81490.087*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0333 (13)0.0386 (14)0.0368 (13)−0.0029 (10)−0.0015 (10)0.0024 (10)
O10.0497 (14)0.0632 (16)0.0740 (17)−0.0002 (12)0.0089 (13)0.0110 (13)
O20.0425 (13)0.0767 (17)0.0577 (14)−0.0077 (11)−0.0044 (11)−0.0265 (12)
O30.0416 (12)0.0638 (15)0.0671 (16)0.0026 (11)−0.0034 (11)0.0290 (12)
O40.0364 (11)0.0362 (11)0.0490 (12)−0.0018 (8)−0.0017 (9)0.0015 (9)
S10.0308 (4)0.0463 (5)0.0393 (4)−0.0031 (3)−0.0026 (3)0.0019 (3)
C10.0306 (14)0.0370 (15)0.0288 (14)−0.0035 (12)0.0009 (11)0.0023 (12)
C20.0352 (15)0.0367 (16)0.0418 (16)0.0035 (12)0.0041 (13)−0.0049 (13)
C30.0384 (16)0.0369 (16)0.0362 (15)−0.0046 (12)−0.0003 (13)−0.0077 (12)
C40.0321 (14)0.0342 (15)0.0293 (14)−0.0023 (11)−0.0008 (11)0.0039 (11)
C50.0334 (15)0.0353 (16)0.0476 (17)0.0026 (12)0.0017 (13)−0.0045 (13)
C60.0380 (16)0.0345 (16)0.0433 (17)−0.0046 (12)−0.0003 (13)−0.0075 (13)
C70.0354 (15)0.0371 (16)0.0406 (16)−0.0012 (13)−0.0013 (13)0.0033 (13)
C80.0375 (16)0.0371 (16)0.0394 (16)−0.0013 (12)−0.0012 (13)0.0025 (13)
C90.0441 (18)0.0349 (17)0.060 (2)−0.0035 (14)−0.0054 (15)0.0040 (15)
C100.0363 (17)0.0469 (19)0.057 (2)−0.0104 (14)−0.0080 (15)−0.0009 (15)
C110.0327 (16)0.0493 (19)0.0443 (17)−0.0026 (13)−0.0020 (13)0.0005 (14)
C120.0444 (19)0.057 (2)0.072 (2)0.0109 (16)−0.0017 (17)0.0028 (18)

Geometric parameters (Å, °)

N1—C71.278 (3)C4—C51.386 (4)
N1—C41.418 (3)C5—C61.385 (4)
O1—S11.608 (2)C5—H50.9300
O1—H10.8200C6—H60.9300
O2—S11.424 (2)C7—C81.420 (4)
O3—S11.431 (2)C7—H70.9300
O4—C111.368 (3)C8—C91.352 (4)
O4—C81.372 (3)C9—C101.409 (4)
S1—C11.768 (3)C9—H90.9300
C1—C61.377 (4)C10—C111.344 (4)
C1—C21.392 (4)C10—H100.9300
C2—C31.375 (4)C11—C121.478 (4)
C2—H20.9300C12—H12A0.9600
C3—C41.394 (4)C12—H12B0.9600
C3—H30.9300C12—H12C0.9600
C7—N1—C4118.4 (2)C1—C6—C5119.9 (3)
S1—O1—H1109.5C1—C6—H6120.0
C11—O4—C8106.5 (2)C5—C6—H6120.0
O2—S1—O3119.29 (15)N1—C7—C8124.3 (3)
O2—S1—O1108.48 (14)N1—C7—H7117.8
O3—S1—O1105.76 (13)C8—C7—H7117.8
O2—S1—C1107.28 (13)C9—C8—O4109.6 (2)
O3—S1—C1107.07 (13)C9—C8—C7130.5 (3)
O1—S1—C1108.60 (13)O4—C8—C7119.9 (2)
C6—C1—C2119.9 (3)C8—C9—C10106.9 (3)
C6—C1—S1120.9 (2)C8—C9—H9126.6
C2—C1—S1119.2 (2)C10—C9—H9126.6
C3—C2—C1120.2 (3)C11—C10—C9107.1 (3)
C3—C2—H2119.9C11—C10—H10126.5
C1—C2—H2119.9C9—C10—H10126.5
C2—C3—C4120.2 (3)C10—C11—O4110.0 (3)
C2—C3—H3119.9C10—C11—C12133.9 (3)
C4—C3—H3119.9O4—C11—C12116.1 (3)
C5—C4—C3119.2 (3)C11—C12—H12A109.5
C5—C4—N1118.0 (2)C11—C12—H12B109.5
C3—C4—N1122.8 (2)H12A—C12—H12B109.5
C6—C5—C4120.6 (3)C11—C12—H12C109.5
C6—C5—H5119.7H12A—C12—H12C109.5
C4—C5—H5119.7H12B—C12—H12C109.5
O2—S1—C1—C6−8.0 (3)C2—C1—C6—C5−0.8 (4)
O3—S1—C1—C6−137.2 (2)S1—C1—C6—C5−179.9 (2)
O1—S1—C1—C6109.0 (2)C4—C5—C6—C10.0 (4)
O2—S1—C1—C2172.8 (2)C4—N1—C7—C8177.3 (3)
O3—S1—C1—C243.7 (3)C11—O4—C8—C9−0.2 (3)
O1—S1—C1—C2−70.1 (2)C11—O4—C8—C7−178.6 (3)
C6—C1—C2—C3−0.1 (4)N1—C7—C8—C9−174.2 (3)
S1—C1—C2—C3179.1 (2)N1—C7—C8—O43.8 (4)
C1—C2—C3—C41.7 (4)O4—C8—C9—C10−0.3 (4)
C2—C3—C4—C5−2.4 (4)C7—C8—C9—C10177.9 (3)
C2—C3—C4—N1−179.6 (2)C8—C9—C10—C110.6 (4)
C7—N1—C4—C5146.0 (3)C9—C10—C11—O4−0.8 (4)
C7—N1—C4—C3−36.9 (4)C9—C10—C11—C12179.8 (4)
C3—C4—C5—C61.6 (4)C8—O4—C11—C100.7 (3)
N1—C4—C5—C6178.8 (2)C8—O4—C11—C12−179.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.213.025 (3)176

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2168).

References

  • Abd El Rehim, S. S., Ibrahim, M. A. M. & Khalid, K. F. (2001). Mater. Chem. Phys.70, 268–273.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hariharan, M. & Urbach, F. L. (1969). Inorg. Chem.8, 556–559.
  • Koning, P. K. & Cantilena, L. (1994). Ann. Intern. Med.154, 590–591.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2547–2554.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography