PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1139–m1140.
Published online 2008 August 9. doi:  10.1107/S1600536808024148
PMCID: PMC2960524

catena-Poly[[tetra­kis(μ2-acetato-κ2 O:O′)dicopper(II)(CuCu)]-μ2-acetato-κ2 O:O′-[bis­[μ2-3-(dimethyl­amino)propan-1-olato]-κ2 N,O:O2 O:N,O-bis­[(tetra­hydro­furan-κO)copper(II)]]-μ2-acetato-κ2 O:O′]

Abstract

The title complex, [Cu4(C5H12NO)2(C2H3O2)6(C4H8O)2]n, consists of dinuclear [Cu2(C5H12NO)2(THF)2] (THF is tetra­hydro­furan) and [Cu2(CH3COO)4] units linked through acetate ions, generating parallel one-dimensional polymeric chains propagating in the [1An external file that holds a picture, illustration, etc.
Object name is e-64-m1139-efi1.jpg0] direction. In the first dinuclear unit, CuII ions related by inversion symmetry are bridged by two 3-(dimethyl­amino)propan-1-olate ligands. Likewise, a pair of inversion-related CuII ions are bridged by four acetate groups. The crystallographically independent Cu centers are linked to one another by a single bridging acetate group, generating an infinite chain. The distorted square-pyramidal coordination of the first metal center is completed with an apical THF mol­ecule, with a long Cu—O bond length of 2.476 (5) Å. The geometry around the other metal atom is close to octa­hedral, and the Cu(...)Cu separation in this unit is 2.652 (1) Å. The distance between the metal centers in the first dinuclear unit is considerably longer [3.068 (1) Å], suggesting little or no bonding inter­action. The Cu(...)Cu separation between two acetate-bridged independent Cu centers is 4.860 (2) Å. The THF mol­ecule has methyl­ene groups disordered over two positions, with occupancies of 0.608 (13) and 0.392 (13).

Related literature

For related literature, see: Catania et al. (1990 [triangle]); El Fallah et al. (2004 [triangle]); Li et al. (1994 [triangle]); Mazhar et al. (2006 [triangle]); Tahir et al. (2007 [triangle]); Torres et al. (1996 [triangle]); Wang et al. (1993 [triangle]); Zhang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1139-scheme1.jpg

Experimental

Crystal data

  • [Cu4(C5H12NO)2(C2H3O2)6(C4H8O)2]
  • M r = 956.94
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1139-efi2.jpg
  • a = 25.686 (5) Å
  • b = 8.972 (5) Å
  • c = 18.021 (5) Å
  • β = 105.782 (5)°
  • V = 3996 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.17 mm−1
  • T = 100 (2) K
  • 0.23 × 0.10 × 0.04 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 15315 measured reflections
  • 4093 independent reflections
  • 3300 reflections with I > 2σ(I)
  • R int = 0.093

Refinement

  • R[F 2 > 2σ(F 2)] = 0.075
  • wR(F 2) = 0.156
  • S = 1.22
  • 4093 reflections
  • 268 parameters
  • 167 restraints
  • H-atom parameters constrained
  • Δρmax = 1.17 e Å−3
  • Δρmin = −0.89 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024148/bh2182sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024148/bh2182Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MS is grateful to the Higher Education Commission of Pakistan for financial support for the PhD program.

supplementary crystallographic information

Comment

For the last two decades, there has been a considerable interest in the investigation of CuII complexes using carboxylate and aminoalcohol as ligands (Wang et al., 1993; El Fallah et al., 2004; Tahir et al., 2007; Mazhar et al., 2006) due to their potential use as CVD precursors for the deposition of copper and copper(II) oxide with diverse applications. For example, copper oxide is a component of high Tc superconductors (Catania et al., 1990). Being an excellent electrical conductor and good resistor for electromigration, metallic copper may replace aluminum alloys for multi-level metallization applications in Ultra Large Scale Integration (ULSI) technology (Torres et al., 1996; Li et al., 1994).

Herein, we report, the structure of a new polymeric CuII complex, (I), in which the molecules are linked into parallel, one dimensional polymeric chains in the [1 -1 0] direction, through acetate and 3-dimethylaminopropan-1-olate (dmap) bridging ligands, with tetrahydrofuran (THF) as an ancillary ligand.

In the title compound (Fig. 1), the environment of Cu1 is distorted square pyramidal, with the ligation set [CuO4N] consisting of O1, O1i [symmetry code: (i) 1/2-x, 1/2-y, 1-z] of two bridging-chelating dmap ligands, O2 of the bridging acetate group, O1S of the THF molecule and N1 of one bridging-chelating dmap ligand. The deviation from perfect square pyramidal geometry around Cu1 is evident from the O1—Cu1—O1i bite angle of 75.99 (18)° (less than 90°) and O1—Cu1—O2 angle, 167.93 (17)° [less than 180°]. Additionally, the Cu—O bond length of Cu1 to the apical O atom, O1S, is 2.476 (5) Å, longer than all other Cu—O bond lengths around Cu1, which are consistent with the sum of the ionic radii, 1.92 Å. The overall geometry around Cu2 is close to octahedral. The equatorial plane is formed by O4, O6, O5ii and O7ii of four bridging acetate groups connecting Cu2 and Cu2ii [symmetry code: (ii) 1-x, -y, 1-z] atoms of two monomers in the polymeric structure, while O atom O3 of the bridging acetate links Cu2 in the axial position in the octahedron. The trans angles in the equatorial plane deviate slightly from ideal value of 180°, and the Cu2—O3 bond length of 2.141 (4) Å is slightly longer than the normal value (1.92 Å), indicating slightly distorted coordination geometry around the Cu2 atom in the complex. All the Cu2—O bond distances in the equatorial plane are in agreement with the bond lengths found in similar complexes (Zhang et al., 2004). The inversion related Cu2 atoms are linked by Cu—Cu bonds of 2.652 (1) Å, completing the octahedral coordination of Cu2. The distance between the inversion related Cu1 atoms is considerably longer, 3.068 (1) Å, suggesting little or no bonding interaction, and the Cu1···Cu2 separation is 4.860 (2) Å.

Experimental

3-Dimethylamino-1-propanol (0.15 g, 1.25 mmol) was added to a stirred suspension of Cu(CH3COO)2.H2O (0.50 g, 2.50 mmol) in 25 ml of THF. After two hours of stirring, the mixture was vacuum evaporated to dryness and the resulting solid was redissolved in THF to give greenish blue block-shaped crystals, at room temperature, after 10 days.

Refinement

Atoms C1S, C2S and C3S of the THF molecule are disordered over two sites with occupancies constrained to sum to unity, and the highest occupancy fraction refining to a value of 0.608 (13). Distance restraints were applied to the O—C and C—C bond lengths of the disordered THF using the SADI command and restraints were applied to the atomic displacement parameters of this molecule. H atoms were included in calculated positions using the riding model with C—H distances ranging from 0.96 to 0.97 Å and Ueq values 1.2 to 1.5 times those of the parent atoms; the methyl H atoms were calculated so as to maximize the sum of the electron density at the three calculated positions.

Figures

Fig. 1.
Molecular structure of (I) showing atom-labeling scheme and displacement ellipsoids at the 50% probability level. H atoms and disordered atoms have been removed for clarity. Symmetry codes: A 1/2-x, 1/2-y, 1-z; B 1-x, -y, 1-z.

Crystal data

[Cu4(C5H12NO)2(C2H3O2)6(C4H8O)2]F000 = 1984
Mr = 956.94Dx = 1.590 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 2913 reflections
a = 25.686 (5) Åθ = 2.4–26.4º
b = 8.972 (5) ŵ = 2.17 mm1
c = 18.021 (5) ÅT = 100 (2) K
β = 105.782 (5)ºPlate, blue
V = 3996 (3) Å30.23 × 0.10 × 0.04 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3300 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.093
Monochromator: graphiteθmax = 26.4º
T = 100(2) Kθmin = 2.4º
[var phi] and ω scansh = −32→32
Absorption correction: nonek = −11→11
15315 measured reflectionsl = −22→21
4093 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.156  w = 1/[σ2(Fo2) + (0.0593P)2 + 6.3428P] where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
4093 reflectionsΔρmax = 1.17 e Å3
268 parametersΔρmin = −0.89 e Å3
167 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.30186 (3)0.30456 (8)0.55814 (4)0.0138 (2)
Cu20.45657 (3)0.02909 (8)0.52386 (4)0.0172 (2)
O10.25020 (14)0.3612 (4)0.4632 (2)0.0151 (8)
O20.35126 (14)0.2046 (5)0.6459 (2)0.0176 (9)
O30.38789 (15)0.0922 (5)0.5624 (2)0.0185 (9)
O40.48175 (19)−0.1399 (6)0.5945 (3)0.0396 (13)
O50.55563 (17)−0.1852 (5)0.5562 (2)0.0256 (10)
O60.42008 (17)−0.1147 (6)0.4445 (3)0.0351 (12)
O70.49313 (17)−0.1635 (5)0.4038 (3)0.0291 (11)
N10.35282 (19)0.4863 (5)0.5650 (3)0.0183 (11)
C10.3780 (3)0.5304 (8)0.6455 (4)0.0299 (15)
H1A0.40260.61140.64660.045*
H1B0.39730.44720.67340.045*
H1C0.35040.56140.66890.045*
C20.3966 (2)0.4443 (7)0.5296 (4)0.0238 (14)
H2A0.41810.53050.52650.036*
H2B0.38100.40570.47870.036*
H2C0.41910.36940.56060.036*
C30.3233 (2)0.6201 (7)0.5256 (4)0.0236 (14)
H3A0.34930.69940.52750.028*
H3B0.29850.65340.55420.028*
C40.2913 (2)0.5957 (7)0.4414 (4)0.0256 (15)
H4A0.28210.69190.41680.031*
H4B0.31410.54390.41480.031*
C50.2399 (2)0.5068 (7)0.4328 (4)0.0235 (14)
H5A0.21690.55860.45910.028*
H5B0.22060.50050.37860.028*
C60.3837 (2)0.1105 (7)0.6289 (3)0.0180 (13)
C70.4177 (3)0.0192 (8)0.6959 (4)0.0328 (17)
H7A0.4166−0.08390.68130.049*
H7B0.40350.02990.73970.049*
H7C0.45440.05400.70900.049*
C80.5252 (2)−0.2083 (7)0.5982 (4)0.0209 (13)
C90.5405 (3)−0.3270 (7)0.6589 (4)0.0319 (16)
H9A0.5155−0.40850.64560.048*
H9B0.5394−0.28660.70780.048*
H9C0.5764−0.36200.66230.048*
C100.4439 (2)−0.1799 (7)0.4023 (4)0.0211 (13)
C110.4112 (3)−0.2912 (7)0.3460 (4)0.0311 (16)
H11A0.3992−0.36940.37380.047*
H11B0.4332−0.33280.31580.047*
H11C0.3804−0.24240.31260.047*
O1S0.25794 (16)0.4312 (6)0.6472 (2)0.0302 (10)
C1S0.2630 (5)0.3409 (16)0.7175 (6)0.031 (2)0.608 (13)
H1S10.28110.39830.76280.037*0.608 (13)
H1S20.28430.25240.71590.037*0.608 (13)
C2S0.2070 (5)0.2968 (15)0.7220 (8)0.035 (2)0.608 (13)
H2S10.19530.20380.69520.042*0.608 (13)
H2S20.20540.28850.77500.042*0.608 (13)
C3S0.1749 (4)0.4257 (14)0.6819 (6)0.0286 (18)0.608 (13)
H3S10.17810.51080.71610.034*0.608 (13)
H3S20.13700.39980.66200.034*0.608 (13)
C4S0.2002 (2)0.4563 (8)0.6182 (4)0.0272 (12)0.608 (13)
H4S10.18510.39060.57490.033*0.608 (13)
H4S20.19330.55850.60070.033*0.608 (13)
C1T0.2742 (8)0.392 (3)0.7265 (8)0.034 (3)0.392 (13)
H1T10.27240.47530.75990.041*0.392 (13)
H1T20.30990.34740.74170.041*0.392 (13)
C2T0.2304 (7)0.281 (2)0.7224 (11)0.037 (3)0.392 (13)
H2T10.22300.27180.77220.044*0.392 (13)
H2T20.24100.18430.70750.044*0.392 (13)
C3T0.1812 (6)0.337 (2)0.6632 (9)0.030 (2)0.392 (13)
H3T10.15520.37680.68810.036*0.392 (13)
H3T20.16420.25600.62930.036*0.392 (13)
C4T0.2002 (2)0.4563 (8)0.6182 (4)0.0272 (12)0.392 (13)
H4T10.18740.44010.56300.033*0.392 (13)
H4T20.18990.55510.63070.033*0.392 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0061 (3)0.0192 (4)0.0153 (4)0.0016 (3)0.0012 (3)−0.0012 (3)
Cu20.0079 (3)0.0222 (4)0.0218 (4)0.0048 (3)0.0045 (3)0.0020 (3)
O10.0100 (18)0.015 (2)0.017 (2)0.0006 (16)−0.0010 (16)0.0048 (17)
O20.0077 (19)0.026 (2)0.017 (2)0.0038 (16)0.0001 (16)−0.0036 (18)
O30.0070 (18)0.032 (3)0.016 (2)0.0028 (17)0.0023 (16)0.0001 (18)
O40.028 (3)0.043 (3)0.056 (3)0.021 (2)0.026 (3)0.028 (3)
O50.018 (2)0.035 (3)0.026 (2)0.0129 (19)0.0088 (19)0.008 (2)
O60.013 (2)0.044 (3)0.050 (3)−0.006 (2)0.010 (2)−0.022 (3)
O70.017 (2)0.045 (3)0.025 (2)−0.003 (2)0.0047 (19)−0.010 (2)
N10.012 (2)0.021 (3)0.024 (3)−0.002 (2)0.007 (2)−0.003 (2)
C10.025 (3)0.035 (4)0.024 (4)−0.004 (3)−0.004 (3)−0.007 (3)
C20.013 (3)0.024 (4)0.037 (4)0.001 (2)0.011 (3)−0.002 (3)
C30.014 (3)0.020 (3)0.035 (4)0.001 (2)0.002 (3)−0.001 (3)
C40.016 (3)0.019 (3)0.039 (4)−0.003 (2)0.002 (3)0.009 (3)
C50.013 (3)0.027 (4)0.028 (3)0.000 (2)0.001 (3)0.002 (3)
C60.007 (3)0.022 (3)0.023 (3)−0.003 (2)0.000 (2)0.001 (3)
C70.027 (4)0.044 (4)0.027 (4)0.021 (3)0.007 (3)0.010 (3)
C80.018 (3)0.022 (3)0.020 (3)−0.001 (2)0.001 (2)0.000 (3)
C90.027 (4)0.028 (4)0.042 (4)0.010 (3)0.012 (3)0.014 (3)
C100.018 (3)0.018 (3)0.025 (3)0.003 (2)0.003 (3)0.007 (3)
C110.030 (4)0.026 (4)0.033 (4)−0.004 (3)0.001 (3)−0.002 (3)
O1S0.0107 (18)0.057 (3)0.024 (2)0.0075 (19)0.0063 (17)−0.003 (2)
C1S0.014 (4)0.055 (5)0.021 (4)0.011 (4)0.000 (3)−0.002 (4)
C2S0.020 (4)0.049 (5)0.034 (4)0.005 (4)0.006 (4)0.010 (3)
C3S0.012 (3)0.042 (4)0.032 (4)0.002 (3)0.007 (3)0.002 (4)
C4S0.011 (2)0.041 (3)0.029 (2)0.008 (2)0.0047 (19)0.004 (2)
C1T0.015 (4)0.060 (6)0.023 (4)0.008 (4)−0.002 (4)−0.003 (5)
C2T0.025 (5)0.052 (5)0.030 (5)0.008 (5)0.001 (4)0.008 (4)
C3T0.015 (4)0.045 (5)0.030 (4)0.004 (4)0.006 (4)0.003 (4)
C4T0.011 (2)0.041 (3)0.029 (2)0.008 (2)0.0047 (19)0.004 (2)

Geometric parameters (Å, °)

Cu1—O11.926 (4)C5—H5B0.9700
Cu1—O21.956 (4)C6—C71.522 (8)
Cu1—O1i1.967 (4)C7—H7A0.9600
Cu1—N12.074 (5)C7—H7B0.9600
Cu2—O61.965 (5)C7—H7C0.9600
Cu2—O41.972 (5)C8—C91.501 (8)
Cu2—O5ii1.974 (4)C9—H9A0.9600
Cu2—O7ii1.977 (4)C9—H9B0.9600
Cu2—O32.141 (4)C9—H9C0.9600
Cu2—Cu2ii2.6520 (14)C10—C111.506 (9)
O1—C51.414 (7)C11—H11A0.9600
O1—Cu1i1.967 (4)C11—H11B0.9600
O2—C61.280 (7)C11—H11C0.9600
O3—C61.243 (7)O1S—C1T1.420 (13)
O4—C81.260 (7)O1S—C4S1.449 (6)
O5—C81.244 (7)O1S—C1S1.480 (10)
O5—Cu2ii1.974 (4)C1S—C2S1.514 (12)
O6—C101.244 (7)C1S—H1S10.9700
O7—C101.265 (7)C1S—H1S20.9700
O7—Cu2ii1.977 (4)C2S—C3S1.489 (11)
N1—C11.473 (8)C2S—H2S10.9700
N1—C21.485 (7)C2S—H2S20.9700
N1—C31.492 (8)C3S—C4S1.493 (10)
C1—H1A0.9600C3S—H3S10.9700
C1—H1B0.9600C3S—H3S20.9700
C1—H1C0.9600C4S—H4S10.9700
C2—H2A0.9600C4S—H4S20.9700
C2—H2B0.9600C1T—C2T1.487 (14)
C2—H2C0.9600C1T—H1T10.9700
C3—C41.532 (9)C1T—H1T20.9700
C3—H3A0.9700C2T—C3T1.499 (14)
C3—H3B0.9700C2T—H2T10.9700
C4—C51.514 (8)C2T—H2T20.9700
C4—H4A0.9700C3T—H3T10.9700
C4—H4B0.9700C3T—H3T20.9700
C5—H5A0.9700
O1—Cu1—O2167.93 (17)O3—C6—C7120.8 (5)
O1—Cu1—O1i75.99 (18)O2—C6—C7115.8 (5)
O2—Cu1—O1i93.93 (16)C6—C7—H7A109.5
O1—Cu1—N196.69 (18)C6—C7—H7B109.5
O2—Cu1—N193.02 (18)H7A—C7—H7B109.5
O1i—Cu1—N1172.24 (18)C6—C7—H7C109.5
O6—Cu2—O488.5 (2)H7A—C7—H7C109.5
O6—Cu2—O5ii89.1 (2)H7B—C7—H7C109.5
O4—Cu2—O5ii167.51 (18)O5—C8—O4125.5 (6)
O6—Cu2—O7ii167.87 (18)O5—C8—C9118.6 (5)
O4—Cu2—O7ii90.1 (2)O4—C8—C9115.9 (5)
O5ii—Cu2—O7ii89.7 (2)C8—C9—H9A109.5
O6—Cu2—O397.94 (17)C8—C9—H9B109.5
O4—Cu2—O398.52 (17)H9A—C9—H9B109.5
O5ii—Cu2—O393.94 (16)C8—C9—H9C109.5
O7ii—Cu2—O394.19 (17)H9A—C9—H9C109.5
O6—Cu2—Cu2ii84.91 (13)H9B—C9—H9C109.5
O4—Cu2—Cu2ii84.33 (13)O6—C10—O7125.9 (6)
O5ii—Cu2—Cu2ii83.26 (12)O6—C10—C11116.5 (5)
O7ii—Cu2—Cu2ii82.96 (13)O7—C10—C11117.6 (6)
O3—Cu2—Cu2ii176.00 (12)C10—C11—H11A109.5
C5—O1—Cu1126.8 (4)C10—C11—H11B109.5
C5—O1—Cu1i125.3 (3)H11A—C11—H11B109.5
Cu1—O1—Cu1i104.01 (18)C10—C11—H11C109.5
C6—O2—Cu1115.5 (4)H11A—C11—H11C109.5
C6—O3—Cu2130.0 (4)H11B—C11—H11C109.5
C8—O4—Cu2122.6 (4)C1T—O1S—C4S113.2 (10)
C8—O5—Cu2ii124.2 (4)C4S—O1S—C1S103.7 (6)
C10—O6—Cu2122.5 (4)O1S—C1S—C2S109.0 (8)
C10—O7—Cu2ii123.7 (4)O1S—C1S—H1S1109.9
C1—N1—C2108.1 (5)C2S—C1S—H1S1109.9
C1—N1—C3106.4 (5)O1S—C1S—H1S2109.9
C2—N1—C3110.3 (5)C2S—C1S—H1S2109.9
C1—N1—Cu1111.7 (4)H1S1—C1S—H1S2108.3
C2—N1—Cu1108.3 (4)C3S—C2S—C1S100.4 (9)
C3—N1—Cu1111.9 (3)C3S—C2S—H2S1111.7
N1—C1—H1A109.5C1S—C2S—H2S1111.7
N1—C1—H1B109.5C3S—C2S—H2S2111.7
H1A—C1—H1B109.5C1S—C2S—H2S2111.7
N1—C1—H1C109.5H2S1—C2S—H2S2109.5
H1A—C1—H1C109.5C2S—C3S—C4S102.4 (8)
H1B—C1—H1C109.5C2S—C3S—H3S1111.3
N1—C2—H2A109.5C4S—C3S—H3S1111.3
N1—C2—H2B109.5C2S—C3S—H3S2111.3
H2A—C2—H2B109.5C4S—C3S—H3S2111.3
N1—C2—H2C109.5H3S1—C3S—H3S2109.2
H2A—C2—H2C109.5O1S—C4S—C3S108.2 (6)
H2B—C2—H2C109.5O1S—C4S—H4S1110.1
N1—C3—C4115.0 (5)C3S—C4S—H4S1110.1
N1—C3—H3A108.5O1S—C4S—H4S2110.1
C4—C3—H3A108.5C3S—C4S—H4S2110.1
N1—C3—H3B108.5H4S1—C4S—H4S2108.4
C4—C3—H3B108.5O1S—C1T—C2T96.0 (13)
H3A—C3—H3B107.5O1S—C1T—H1T1112.5
C5—C4—C3113.2 (5)C2T—C1T—H1T1112.5
C5—C4—H4A108.9O1S—C1T—H1T2112.5
C3—C4—H4A108.9C2T—C1T—H1T2112.5
C5—C4—H4B108.9H1T1—C1T—H1T2110.1
C3—C4—H4B108.9C1T—C2T—C3T107.0 (14)
H4A—C4—H4B107.7C1T—C2T—H2T1110.3
O1—C5—C4112.4 (5)C3T—C2T—H2T1110.3
O1—C5—H5A109.1C1T—C2T—H2T2110.3
C4—C5—H5A109.1C3T—C2T—H2T2110.3
O1—C5—H5B109.1H2T1—C2T—H2T2108.6
C4—C5—H5B109.1C2T—C3T—H3T1110.4
H5A—C5—H5B107.9C2T—C3T—H3T2110.4
O3—C6—O2123.4 (5)H3T1—C3T—H3T2108.6
O2—Cu1—O1—C5−167.5 (7)C1—N1—C3—C4−176.8 (5)
O1i—Cu1—O1—C5158.4 (5)C2—N1—C3—C466.2 (6)
N1—Cu1—O1—C5−24.2 (5)Cu1—N1—C3—C4−54.5 (6)
O2—Cu1—O1—Cu1i34.0 (8)N1—C3—C4—C574.3 (7)
O1i—Cu1—O1—Cu1i0.001 (1)Cu1—O1—C5—C441.8 (7)
N1—Cu1—O1—Cu1i177.36 (19)Cu1i—O1—C5—C4−164.1 (4)
O1—Cu1—O2—C649.2 (9)C3—C4—C5—O1−62.2 (7)
O1i—Cu1—O2—C682.2 (4)Cu2—O3—C6—O2148.6 (4)
N1—Cu1—O2—C6−94.4 (4)Cu2—O3—C6—C7−31.7 (8)
O6—Cu2—O3—C6136.6 (5)Cu1—O2—C6—O36.6 (7)
O4—Cu2—O3—C646.9 (6)Cu1—O2—C6—C7−173.2 (4)
O5ii—Cu2—O3—C6−133.8 (5)Cu2ii—O5—C8—O42.4 (9)
O7ii—Cu2—O3—C6−43.8 (5)Cu2ii—O5—C8—C9−177.7 (4)
O6—Cu2—O4—C888.2 (6)Cu2—O4—C8—O5−4.3 (10)
O5ii—Cu2—O4—C89.5 (14)Cu2—O4—C8—C9175.8 (5)
O7ii—Cu2—O4—C8−79.7 (6)Cu2—O6—C10—O7−0.3 (9)
O3—Cu2—O4—C8−174.0 (5)Cu2—O6—C10—C11177.8 (4)
Cu2ii—Cu2—O4—C83.2 (5)Cu2ii—O7—C10—O60.6 (9)
O4—Cu2—O6—C10−84.5 (5)Cu2ii—O7—C10—C11−177.5 (4)
O5ii—Cu2—O6—C1083.3 (5)C1T—O1S—C1S—C2S127 (4)
O7ii—Cu2—O6—C10−0.9 (14)C4S—O1S—C1S—C2S7.9 (13)
O3—Cu2—O6—C10177.1 (5)O1S—C1S—C2S—C3S−29.8 (14)
Cu2ii—Cu2—O6—C100.0 (5)C1S—C2S—C3S—C4S38.9 (12)
O1—Cu1—N1—C1146.9 (4)C1T—O1S—C4S—C3S−2.4 (15)
O2—Cu1—N1—C1−40.3 (4)C1S—O1S—C4S—C3S17.8 (10)
O1—Cu1—N1—C2−94.2 (4)C2S—C3S—C4S—O1S−37.0 (11)
O2—Cu1—N1—C278.7 (4)C4S—O1S—C1T—C2T45.5 (19)
O1—Cu1—N1—C327.7 (4)C1S—O1S—C1T—C2T−22 (3)
O2—Cu1—N1—C3−159.5 (4)O1S—C1T—C2T—C3T−34 (2)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2182).

References

  • Bruker (2001). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Catania, P., Hovnanian, N., Cot, L., Pham Thi, M., Kormann, R. & Ganne, J. P. (1990). Mater. Res. Bull.25, 631–642.
  • El Fallah, M. S., Escuer, A., Vicente, R., Badyine, F., Solans, X. & Font-Bardia, M. (2004). Inorg. Chem.43, 7218–7226. [PubMed]
  • Li, J., Seidel, T. E. & Mayer, J. W. (1994). MRS Bull.19, 15–22.
  • Mazhar, M., Hussain, S. M., Rabbani, F., Kociok-Köhn, G. & Molloy, K. C. (2006). Bull. Korean Chem. Soc.27, 1572–1576.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tahir, A. A., Hamid, M., Mazhar, M. & Molloy, K. C. (2007). Acta Cryst. E63, m1243–m1245.
  • Torres, J., Mermet, J. L., Madar, R., Crean, G., Gessner, T., Bertz, A., Hasse, W., Plotner, M., Binder, F. & Save, D. (1996). Microelectron. Eng.34, 119–122.
  • Wang, S., Pang, Z., Zheng, J. C. & Wagner, M. J. (1993). Inorg. Chem.32, 5975–5980.
  • Zhang, Y.-L., Chen, S.-W., Liu, W.-S. & Wang, D.-Q. (2004). Acta Cryst. E60, m196–m197.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography