PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1708–o1709.
Published online 2008 August 6. doi:  10.1107/S1600536808024690
PMCID: PMC2960516

2,4-Bis(3-fluoro­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one

Abstract

The title compound, C20H19F2NO, exhibits a chair–chair conformation, with the aryl groups in the heterocycle in equatorial orientations and oriented at an angle of 33.35 (3)° to one another. A crystallographic mirror plane, passing through the N atom, the C and O atoms of the carbonyl group and the C atom in the 7-position, bis­ects the mol­ecule. The mol­ecular structure is stabilized by one C—H(...)N inter­action and the crystal structure is stabilized by a weak C—H(...)π inter­action.

Related literature

For related literature, see: Barker et al. (2005 [triangle]); Dunitz et al. (1997 [triangle]); Evans et al. (1997 [triangle]); Jeyaraman et al. (1981 [triangle]); Padegimas et al. (1972 [triangle]); Smith-Verdier et al. (1983 [triangle]); Web et al. (1967 [triangle]); Wiechert et al. (1997 [triangle]); Cremer & Pople (1975 [triangle]); Ramachandran et al. (2007 [triangle]); Vijayalakshmi et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1708-scheme1.jpg

Experimental

Crystal data

  • C20H19F2NO
  • M r = 327.36
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1708-efi1.jpg
  • a = 7.3844 (2) Å
  • b = 21.5172 (10) Å
  • c = 10.2608 (4) Å
  • V = 1630.36 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 (2) K
  • 0.35 × 0.19 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.967, T max = 0.986
  • 11640 measured reflections
  • 2069 independent reflections
  • 1507 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.154
  • S = 1.03
  • 2069 reflections
  • 118 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker–Nonius, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker–Nonius, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024690/bx2166sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024690/bx2166Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection. This research was supported by the second stage of the BK 21 program and Pukyong National University under the 2008 Postdoc program.

supplementary crystallographic information

Comment

Azabicyclic ketones are important class of heterocycles due to their broad spectrum biological activities (Jeyaraman & Avila, 1981; Barker et al., 2005). Moreover, the fluorine substituted organic molecules are valuable due to the significance of C—F bonds in some bioorganic systems (Evans & Seddon, 1997; Dunitz & Tailor, 1997). Hence, the biological significance of the hydrogen bonds involving fluorine atom have attracted much attention (Ramachandran et al., 2007;Wiechert et al., 1997). Owing to the diverse possibilities in conformations, viz.,chair-chair (Vijayalakshmi et al., 2000), chair-boat (Smith-Verdier et al., 1983) and boat-boat (Padegimas & Kovacic, 1972) for the azabicycle, the present crystal study was undertaken to explore the conformation, stereochemistry and bondings in the title compound.The study of torsion angles, asymmetry parameters and least-squares plane calculation of the title compound shows that the piperidine ring adopts near ideal chair conformation with the deviation of ring atoms N1 and C5 from the C1/C2/C1a/C2a plane by 0.659 (3) and -0.693 (3)Å respectively, the q(2) and q(3) are 0.0165 (16) and -0.6032 (16) Å. The total puckering amplitude, QT = 0.6034 (16)Å and θ = 178.44 (15)°. The cyclohexane ring deviate from the ideal chair conformation by the deviation of ring atoms C4 and C5 from the C2/C3/C2a/C3a plane by 0.527 (4) and - 0.727 (3)Å respectively. For the cyclohexane part, the q(2) and q(3) are 0.1472 (18) and -0.5470 (17)Å respectively. The total puckering amplitude, QT = 0.5664 (17) and θ =164.95 (18)° (Cremer & Pople, 1975; Web & Becker, 1967).Hence, the title compound C20 H19F2NO, exists in twin-chair conformation with equatorial orientations of the 3-fluorophenyl groups on the heterocycle and are orientated at an angle of 33.35 (3) ° to each other. The torsion angles of C5—C2—C1—C6 and its mirror plane C5—C2a—C1a—C6a is 178.51 (6)°.

Experimental

In a warm solution of ammonium acetate (0.075 mol) in 50 ml of absolute ethanol, a mixture of cyclohexanone (0.05 mol) and meta fluorobenzaldehyde (0.1 mol) was added and very gently warmed on a hot plate till the yellow color formed during the mixing of the reactants and stirred to the formation of the product. Then, the compound was separated by filtration and washed with 1:5 ethanol-ether mixture. Thus, the separated crude compound was purified by recrystallization from ethanol to obtain the colorless diffraction quality crystals of 2,4-bis (3-fluorophenyl)-3-azabicyclo [3.3.1]nonan-9-one.

Refinement

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms,with aromatic C—H =0.93 Å, aliphatic C—H = 0.98Å and methylen C—H = 0.97 Å. The displacement parameters were set for phenyl,methylen and aliphatic H atoms at Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
ORTEP of the molecule with atoms represented as 30% probability ellipsoids.[symmetry code: _a: x,1/2-y, z]

Crystal data

C20H19F2NOF000 = 688
Mr = 327.36Dx = 1.334 Mg m3
Orthorhombic, PnmaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3860 reflections
a = 7.3844 (2) Åθ = 2.2–27.8º
b = 21.5172 (10) ŵ = 0.10 mm1
c = 10.2608 (4) ÅT = 298 (2) K
V = 1630.36 (11) Å3Needle, colourless
Z = 40.35 × 0.19 × 0.15 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2069 independent reflections
Radiation source: fine-focus sealed tube1507 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 298(2) Kθmax = 28.3º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 1999)h = −9→9
Tmin = 0.967, Tmax = 0.986k = −28→27
11640 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154  w = 1/[σ2(Fo2) + (0.0736P)2 + 0.4778P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2069 reflectionsΔρmax = 0.27 e Å3
118 parametersΔρmin = −0.25 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9282 (2)0.30645 (7)0.60735 (13)0.0415 (4)
H10.89100.30520.69900.050*
C20.75387 (19)0.30789 (7)0.52202 (15)0.0444 (4)
H20.68130.34410.54680.053*
C30.7856 (2)0.30939 (8)0.37344 (15)0.0482 (4)
H3A0.67070.31660.33020.058*
H3B0.86460.34410.35290.058*
C40.8693 (3)0.25000.3196 (2)0.0501 (6)
H4A0.85650.25000.22550.060*
H4B0.99780.25000.33940.060*
C50.6479 (3)0.25000.5518 (2)0.0460 (5)
C61.0432 (2)0.36362 (7)0.58774 (14)0.0436 (4)
C71.1855 (2)0.36471 (8)0.49973 (17)0.0509 (4)
H71.21530.32940.45220.061*
C81.2815 (2)0.41854 (9)0.4838 (2)0.0603 (5)
C91.2457 (3)0.47171 (9)0.5505 (2)0.0723 (6)
H91.31390.50750.53710.087*
C101.1056 (3)0.47077 (9)0.6385 (2)0.0767 (7)
H101.07750.50650.68530.092*
C111.0059 (3)0.41717 (8)0.65820 (19)0.0599 (5)
H110.91280.41700.71930.072*
F11.42123 (18)0.41845 (6)0.39681 (15)0.0962 (5)
N11.0305 (2)0.25000.57975 (17)0.0395 (4)
O10.4936 (2)0.25000.59191 (18)0.0638 (5)
H1A1.127 (3)0.25000.629 (2)0.047 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0426 (8)0.0480 (9)0.0338 (7)0.0033 (6)0.0003 (6)−0.0020 (6)
C20.0364 (7)0.0515 (10)0.0454 (8)0.0071 (6)0.0012 (6)−0.0016 (7)
C30.0432 (8)0.0592 (10)0.0423 (8)−0.0006 (7)−0.0067 (6)0.0080 (7)
C40.0439 (11)0.0734 (16)0.0331 (10)0.000−0.0014 (9)0.000
C50.0361 (11)0.0656 (15)0.0362 (10)0.0000.0020 (8)0.000
C60.0450 (8)0.0426 (9)0.0431 (7)0.0051 (6)−0.0104 (6)−0.0028 (6)
C70.0511 (9)0.0455 (9)0.0560 (9)−0.0018 (7)−0.0026 (7)−0.0016 (7)
C80.0528 (10)0.0552 (11)0.0731 (12)−0.0072 (8)−0.0096 (9)0.0110 (9)
C90.0659 (12)0.0455 (11)0.1056 (17)−0.0076 (9)−0.0312 (12)0.0070 (11)
C100.0815 (14)0.0464 (11)0.1024 (16)0.0107 (10)−0.0309 (13)−0.0217 (11)
C110.0610 (10)0.0555 (11)0.0632 (10)0.0109 (8)−0.0095 (9)−0.0158 (8)
F10.0816 (9)0.0895 (10)0.1176 (11)−0.0267 (7)0.0191 (8)0.0147 (8)
N10.0367 (9)0.0412 (10)0.0407 (9)0.000−0.0063 (7)0.000
O10.0408 (9)0.0867 (14)0.0639 (11)0.0000.0146 (8)0.000

Geometric parameters (Å, °)

C1—N11.4585 (17)C5—C2i1.5025 (19)
C1—C61.508 (2)C6—C71.386 (2)
C1—C21.557 (2)C6—C111.388 (2)
C1—H10.9800C7—C81.368 (2)
C2—C51.5025 (19)C7—H70.9300
C2—C31.543 (2)C8—C91.359 (3)
C2—H20.9800C8—F11.364 (2)
C3—C41.523 (2)C9—C101.373 (3)
C3—H3A0.9700C9—H90.9300
C3—H3B0.9700C10—C111.383 (3)
C4—C3i1.523 (2)C10—H100.9300
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700N1—C1i1.4585 (17)
C5—O11.212 (2)N1—H1A0.87 (2)
N1—C1—C6111.20 (12)O1—C5—C2123.98 (8)
N1—C1—C2109.63 (12)O1—C5—C2i123.98 (8)
C6—C1—C2111.97 (12)C2—C5—C2i112.01 (17)
N1—C1—H1108.0C7—C6—C11118.42 (16)
C6—C1—H1108.0C7—C6—C1121.85 (13)
C2—C1—H1108.0C11—C6—C1119.73 (15)
C5—C2—C3107.30 (14)C8—C7—C6119.02 (16)
C5—C2—C1107.44 (13)C8—C7—H7120.5
C3—C2—C1115.49 (12)C6—C7—H7120.5
C5—C2—H2108.8C9—C8—F1118.52 (17)
C3—C2—H2108.8C9—C8—C7123.5 (2)
C1—C2—H2108.8F1—C8—C7117.96 (17)
C4—C3—C2113.73 (14)C8—C9—C10117.71 (19)
C4—C3—H3A108.8C8—C9—H9121.1
C2—C3—H3A108.8C10—C9—H9121.1
C4—C3—H3B108.8C9—C10—C11120.63 (18)
C2—C3—H3B108.8C9—C10—H10119.7
H3A—C3—H3B107.7C11—C10—H10119.7
C3i—C4—C3114.07 (18)C10—C11—C6120.68 (19)
C3i—C4—H4A108.7C10—C11—H11119.7
C3—C4—H4A108.7C6—C11—H11119.7
C3i—C4—H4B108.7C1i—N1—C1112.78 (16)
C3—C4—H4B108.7C1i—N1—H1A108.1 (8)
H4A—C4—H4B107.6C1—N1—H1A108.1 (8)
N1—C1—C2—C557.58 (16)C2—C1—C6—C1184.78 (17)
C6—C1—C2—C5−178.52 (13)C11—C6—C7—C8−1.2 (2)
N1—C1—C2—C3−62.09 (17)C1—C6—C7—C8178.18 (15)
C6—C1—C2—C361.81 (17)C6—C7—C8—C90.4 (3)
C5—C2—C3—C4−52.65 (18)C6—C7—C8—F1179.86 (15)
C1—C2—C3—C467.10 (18)F1—C8—C9—C10−179.43 (17)
C2—C3—C4—C3i44.0 (2)C7—C8—C9—C100.1 (3)
C3—C2—C5—O1−113.3 (2)C8—C9—C10—C110.4 (3)
C1—C2—C5—O1122.0 (2)C9—C10—C11—C6−1.2 (3)
C3—C2—C5—C2i65.0 (2)C7—C6—C11—C101.6 (3)
C1—C2—C5—C2i−59.8 (2)C1—C6—C11—C10−177.76 (16)
N1—C1—C6—C728.45 (19)C6—C1—N1—C1i175.53 (10)
C2—C1—C6—C7−94.57 (16)C2—C1—N1—C1i−60.11 (18)
N1—C1—C6—C11−152.20 (15)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4B···N10.972.482.923 (3)108
C11—H11···Cg1ii0.932.933.862 (2)175

Symmetry codes: (ii) x−1/2, −y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2166).

References

  • Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem.13, 4565–4575. [PubMed]
  • Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker–Nonius (2004). APEX2 and SAINT-Plus Bruker–Nonius, Delft, The Netherlands.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dunitz, J. D. & Tailor, R. (1997). Chem. Eur. J.3, 89–98.
  • Evans, T. A. & Seddon, K. R. (1997). Chem. Commun. pp. 2023–2024.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jeyaraman, R. & Avila, S. (1981). Chem. Rev.81, 149–174.
  • Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem.37, 2672–2676.
  • Ramachandran, R., Parthiban, P., Doddi, A., Ramkumar, V. & Kabilan, S. (2007). Acta Cryst. E63, o4559.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.
  • Vijayalakshmi, L., Parthasarathi, V., Venkatraj, M. & Jeyaraman, R. (2000). Acta Cryst. C56, 1240–1241. [PubMed]
  • Web, N. C. & Becker, M. R. (1967). J. Chem. Soc. B, pp. 1317–1321.
  • Wiechert, D., Mootz, D. & Dahlems, T. (1997). J. Am. Chem. Soc.119, 12665–12666.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography