PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1168–m1169.
Published online 2008 August 16. doi:  10.1107/S1600536808025713
PMCID: PMC2960513

(4-Oxido-2-oxo-1,2-dihydro­pyrimidine-5-carboxyl­ato-κ2 O 4,O 5)(4-oxido-2-oxo-1,2-dihydro­pyrimidin-3-ium-5-carboxyl­ato-κ2 O 4,O 5)bis­(1,10-phenanthroline-κ2 N,N′)gadolinium(III) dihydrate

Abstract

The title compound, [Gd(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2O, was obtained from a solvothermal reaction of 2,4-dihydroxy­pyrimidine-5-carboxylic acid (H3iso), GdCl3·6H2O and 1,10-phenanthroline (phen). The GdIII ion is located on a twofold rotation axis and is coordinated by four N atoms from two chelating phen ligands and four O atoms (5-carboxyl­ate and 4-oxido O atoms) from H2iso and Hiso2− ligands. The mol­ecules are linked into a three-dimensional network by N—H(...)O, N—H(...)N and O—H(...)O hydrogen bonds. The H atom involved in an N—H(...)N hydrogen bond is disordered around a twofold rotation axis with half occupancy.

Related literature

For isostructural lanthanide complexes with 2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxylic acid, see: Sun & Jin (2004a [triangle],b [triangle]); Xing et al. (2008a [triangle]). For related literature, see: Hueso-Ureña et al. (1993 [triangle], 1996 [triangle]); Baran et al. (1996 [triangle]); Luo et al. (2002 [triangle]); Maistralis et al. (1991 [triangle], 1992 [triangle]); Xing et al. (2008b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1168-scheme1.jpg

Experimental

Crystal data

  • [Gd(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2O
  • M r = 862.87
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1168-efi1.jpg
  • a = 17.158 (8) Å
  • b = 14.504 (7) Å
  • c = 13.197 (7) Å
  • β = 99.955 (5)°
  • V = 3235 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.13 mm−1
  • T = 273 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.676, T max = 0.816
  • 9884 measured reflections
  • 3686 independent reflections
  • 3212 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.064
  • S = 1.05
  • 3686 reflections
  • 240 parameters
  • H-atom parameters constrained
  • Δρmax = 0.74 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025713/ci2644sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025713/ci2644Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science Foundation of Guangxi Province, China (Guikeqing 0542021), and the Scientific Research Foundation of Guangxi Normal University for financial support.

supplementary crystallographic information

Comment

2,4-Dihydroxypyrimidine-5-carboxylic acid has been extensively used in the preparation of metal complexes because of its versatile coordination modes. It can connect metal ions to form robust networks or some porous coordination polymers. Though various transition metal complexes with 2,4-dihydroxypyrimidine-5-carboxylate have been reported (Maistralis et al., 1991, 1992; Hueso-Ureña et al., 1993, 1996; Baran et al., 1996; Luo et al., 2002; Sun & Jin 2004a), lanthanide complexes are very limited. Only lanthanide complexes of YbIII, TbIII, PrIII, EuIII, NdIII and ErIII have been reported (Sun & Jin 2004b; Xing et al.,2008a,b). In this paper, we report a new GdIII complex, Gd(Hiso)(H2iso)(phen)2.2H2O, (I).

In compound (I), the GdIII atom is located on a twofold rotation axis and coordinated in a square antiprismatic geometry by four N atoms belonging to two chelating phen ligands and four O atoms from one monovalent and one divalent 2,4-dihydroxypyrimidine-5-carboxylate anions. The Gd—O bond lengths [2.288 (2) and 2.334 (2) Å] are shorter than the Gd—N bond lengths [2.586 (3) and 2.603 (3) Å].

The molecules are linked into a three-dimensional network by N—H···O, N—H···N and O—H···O hydrogen bonds (Table 2).

Experimental

A mixture of 2,4-dihydroxypyrimidine-5-carboxylic acid (0.0312 g, 0.2 mmol), GdCl3.6H2O (0.0743 g, 0.2 mmol), phen.H2O (0.0396 g, 0.2 mmol), NaOH (0.008 g, 0.2 mmol) and water (15 ml) was sealed in a 25 ml Teflon-lined stainless-steel reactor and heated at 383 K for 120 h. It was then cooled over a period of 48 h, light yellow crystals were isolated in 80% yield. Elemental analysis for C34H25GdN8O10, calculated: C 47.32, H 2.92, N 12.98%; found: C 47.59,H 2.96, N 13.24%.

Refinement

H atoms of the water molecule were located in a difference Fourier map and allowed to ride on the O atom with Uiso(H) = 1.5Ueq(O). The remaining H atoms were placed at calculated positions (C—H = 0.93 Å and N—H = 0.86 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.
A view of the molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation (1-x, y, 1/2-z).

Crystal data

[Gd(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2OF000 = 1716
Mr = 862.87Dx = 1.772 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3284 reflections
a = 17.158 (8) Åθ = 2.3–25.5º
b = 14.504 (7) ŵ = 2.13 mm1
c = 13.197 (7) ÅT = 273 (2) K
β = 99.955 (5)ºBlock, colourless
V = 3235 (3) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3686 independent reflections
Radiation source: fine-focus sealed tube3212 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 273(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Bruker, 1998)h = −21→22
Tmin = 0.676, Tmax = 0.816k = −18→13
9884 measured reflectionsl = −17→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.064  w = 1/[σ2(Fo2) + (0.0258P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3686 reflectionsΔρmax = 0.74 e Å3
240 parametersΔρmin = −0.65 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Gd10.50000.111515 (14)0.25000.02254 (7)
O10.42801 (12)−0.00176 (14)0.31169 (16)0.0329 (5)
O20.34603 (14)−0.11272 (15)0.33997 (16)0.0352 (5)
O30.40327 (12)0.06523 (14)0.11160 (16)0.0320 (5)
O40.26936 (15)−0.11830 (15)−0.13464 (17)0.0424 (6)
N10.33231 (15)−0.02639 (17)−0.00642 (19)0.0296 (6)
H10.33710.0157−0.05080.035*
N20.28238 (16)−0.16877 (18)0.0304 (2)0.0361 (7)
H20.2589−0.22010.01250.043*0.50
N30.40482 (14)0.25042 (17)0.2136 (2)0.0300 (6)
N40.46494 (14)0.19709 (17)0.40957 (19)0.0282 (6)
C10.34878 (17)−0.0740 (2)0.1674 (2)0.0248 (7)
C20.36429 (17)−0.0080 (2)0.0939 (2)0.0251 (7)
C30.29303 (19)−0.1061 (2)−0.0434 (2)0.0304 (7)
C40.3080 (2)−0.1512 (2)0.1292 (2)0.0348 (8)
H40.2973−0.19490.17650.042*
C50.37526 (17)−0.0627 (2)0.2800 (2)0.0248 (6)
C60.37014 (18)0.2746 (2)0.1201 (3)0.0372 (8)
H60.36890.23190.06720.045*
C70.3352 (2)0.3608 (3)0.0960 (3)0.0475 (10)
H70.31130.37470.02900.057*
C80.3372 (2)0.4239 (3)0.1725 (3)0.0499 (10)
H80.31570.48220.15770.060*
C90.3710 (2)0.4014 (2)0.2728 (3)0.0428 (9)
C100.3742 (2)0.4633 (3)0.3580 (4)0.0592 (12)
H100.35470.52290.34610.071*
C110.4042 (3)0.4380 (3)0.4535 (4)0.0618 (12)
H110.40560.48030.50680.074*
C120.4346 (2)0.3467 (3)0.4763 (3)0.0442 (9)
C130.4638 (2)0.3150 (3)0.5755 (3)0.0577 (11)
H130.46480.35430.63140.069*
C140.4906 (2)0.2274 (3)0.5910 (3)0.0510 (10)
H140.50880.20560.65710.061*
C150.49028 (19)0.1703 (3)0.5054 (2)0.0359 (8)
H150.50890.11030.51660.043*
C160.43530 (18)0.2836 (2)0.3944 (2)0.0298 (7)
C170.40366 (18)0.3123 (2)0.2911 (3)0.0317 (7)
O50.3084 (2)0.6863 (2)0.3396 (2)0.0901 (11)
H5A0.27770.67080.28470.135*
H5B0.31660.74390.34410.135*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Gd10.02861 (12)0.01718 (12)0.01966 (12)0.000−0.00192 (8)0.000
O10.0440 (13)0.0318 (13)0.0208 (11)−0.0131 (11)−0.0007 (10)0.0008 (9)
O20.0496 (14)0.0348 (13)0.0209 (11)−0.0118 (11)0.0055 (10)0.0019 (10)
O30.0427 (13)0.0250 (12)0.0243 (12)−0.0113 (10)−0.0055 (10)0.0032 (9)
O40.0627 (16)0.0363 (14)0.0217 (12)−0.0031 (12)−0.0108 (11)−0.0055 (10)
N10.0409 (15)0.0272 (15)0.0179 (13)−0.0076 (12)−0.0023 (11)0.0023 (11)
N20.0533 (18)0.0244 (15)0.0264 (15)−0.0114 (13)−0.0043 (13)−0.0024 (12)
N30.0299 (14)0.0263 (15)0.0319 (15)0.0024 (11)0.0000 (12)0.0012 (11)
N40.0324 (14)0.0271 (14)0.0244 (14)0.0016 (11)0.0028 (11)0.0010 (11)
C10.0306 (16)0.0229 (16)0.0197 (15)−0.0035 (13)0.0005 (13)0.0026 (12)
C20.0286 (16)0.0229 (16)0.0215 (16)0.0005 (13)−0.0022 (13)−0.0024 (12)
C30.0350 (17)0.0259 (17)0.0268 (17)0.0014 (14)−0.0045 (14)−0.0039 (14)
C40.049 (2)0.0291 (18)0.0247 (17)−0.0116 (16)0.0025 (15)0.0013 (14)
C50.0331 (17)0.0219 (16)0.0191 (15)−0.0014 (13)0.0031 (13)−0.0010 (12)
C60.0365 (18)0.039 (2)0.0339 (19)0.0071 (16)−0.0002 (15)0.0067 (15)
C70.043 (2)0.051 (2)0.047 (2)0.0128 (18)0.0026 (18)0.0207 (19)
C80.049 (2)0.033 (2)0.068 (3)0.0107 (18)0.010 (2)0.019 (2)
C90.040 (2)0.028 (2)0.062 (3)0.0083 (15)0.0133 (18)0.0040 (17)
C100.069 (3)0.030 (2)0.079 (3)0.016 (2)0.015 (2)−0.006 (2)
C110.077 (3)0.037 (2)0.071 (3)0.014 (2)0.013 (3)−0.025 (2)
C120.050 (2)0.039 (2)0.045 (2)0.0016 (18)0.0112 (18)−0.0138 (18)
C130.063 (3)0.068 (3)0.043 (2)0.007 (2)0.010 (2)−0.023 (2)
C140.054 (2)0.069 (3)0.029 (2)0.012 (2)0.0063 (18)−0.0081 (19)
C150.0372 (18)0.043 (2)0.0270 (18)0.0053 (16)0.0051 (15)0.0013 (15)
C160.0294 (17)0.0257 (17)0.0348 (19)0.0005 (13)0.0067 (14)−0.0027 (14)
C170.0271 (16)0.0278 (18)0.041 (2)0.0021 (13)0.0089 (15)0.0027 (15)
O50.133 (3)0.051 (2)0.070 (2)0.000 (2)−0.027 (2)0.0100 (16)

Geometric parameters (Å, °)

Gd1—O12.288 (2)C1—C51.485 (4)
Gd1—O1i2.288 (2)C4—H40.93
Gd1—O3i2.344 (2)C6—C71.399 (5)
Gd1—O32.344 (2)C6—H60.93
Gd1—N3i2.586 (3)C7—C81.358 (6)
Gd1—N32.586 (3)C7—H70.93
Gd1—N42.603 (3)C8—C91.389 (5)
Gd1—N4i2.603 (3)C8—H80.93
O1—C51.282 (3)C9—C171.414 (4)
O2—C51.242 (3)C9—C101.432 (6)
O3—C21.256 (3)C10—C111.329 (6)
O4—C31.216 (4)C10—H100.93
N1—C21.369 (4)C11—C121.435 (6)
N1—C31.383 (4)C11—H110.93
N1—H10.86C12—C131.396 (5)
N2—C41.327 (4)C12—C161.417 (5)
N2—C31.367 (4)C13—C141.355 (5)
N2—H20.86C13—H130.93
N3—C61.322 (4)C14—C151.399 (5)
N3—C171.364 (4)C14—H140.93
N4—C151.323 (4)C15—H150.93
N4—C161.356 (4)C16—C171.439 (4)
C1—C41.369 (4)O5—H5A0.85
C1—C21.421 (4)O5—H5B0.85
O1—Gd1—O1i88.22 (11)N1—C2—C1116.0 (3)
O1—Gd1—O3i82.54 (8)O4—C3—N2123.0 (3)
O1i—Gd1—O3i73.65 (8)O4—C3—N1122.0 (3)
O1—Gd1—O373.65 (8)N2—C3—N1114.9 (3)
O1i—Gd1—O382.54 (8)N2—C4—C1125.5 (3)
O3i—Gd1—O3146.71 (11)N2—C4—H4117.3
O1—Gd1—N3i148.84 (8)C1—C4—H4117.3
O1i—Gd1—N3i105.26 (9)O2—C5—O1122.3 (3)
O3i—Gd1—N3i74.86 (8)O2—C5—C1119.0 (3)
O3—Gd1—N3i135.03 (8)O1—C5—C1118.6 (3)
O1—Gd1—N3105.26 (9)N3—C6—C7123.7 (3)
O1i—Gd1—N3148.84 (8)N3—C6—H6118.1
O3i—Gd1—N3135.03 (8)C7—C6—H6118.1
O3—Gd1—N374.86 (8)C8—C7—C6118.6 (4)
N3i—Gd1—N377.63 (12)C8—C7—H7120.7
O1—Gd1—N480.80 (8)C6—C7—H7120.7
O1i—Gd1—N4147.64 (8)C7—C8—C9120.2 (4)
O3i—Gd1—N474.79 (8)C7—C8—H8119.9
O3—Gd1—N4122.38 (8)C9—C8—H8119.9
N3i—Gd1—N472.83 (8)C8—C9—C17117.7 (4)
N3—Gd1—N463.39 (8)C8—C9—C10123.7 (4)
O1—Gd1—N4i147.64 (8)C17—C9—C10118.6 (4)
O1i—Gd1—N4i80.80 (8)C11—C10—C9121.9 (4)
O3i—Gd1—N4i122.38 (8)C11—C10—H10119.1
O3—Gd1—N4i74.79 (8)C9—C10—H10119.1
N3i—Gd1—N4i63.39 (8)C10—C11—C12121.4 (4)
N3—Gd1—N4i72.83 (8)C10—C11—H11119.3
N4—Gd1—N4i123.04 (11)C12—C11—H11119.3
C5—O1—Gd1140.60 (19)C13—C12—C16116.9 (3)
C2—O3—Gd1132.05 (19)C13—C12—C11124.0 (4)
C2—N1—C3126.4 (3)C16—C12—C11119.1 (4)
C2—N1—H1116.8C14—C13—C12120.5 (4)
C3—N1—H1116.8C14—C13—H13119.7
C4—N2—C3120.6 (3)C12—C13—H13119.7
C4—N2—H2119.7C13—C14—C15118.7 (4)
C3—N2—H2119.7C13—C14—H14120.7
C6—N3—C17117.6 (3)C15—C14—H14120.7
C6—N3—Gd1123.3 (2)N4—C15—C14123.6 (3)
C17—N3—Gd1117.6 (2)N4—C15—H15118.2
C15—N4—C16117.7 (3)C14—C15—H15118.2
C15—N4—Gd1123.4 (2)N4—C16—C12122.5 (3)
C16—N4—Gd1117.1 (2)N4—C16—C17118.5 (3)
C4—C1—C2116.3 (3)C12—C16—C17119.0 (3)
C4—C1—C5120.5 (3)N3—C17—C9122.0 (3)
C2—C1—C5123.2 (3)N3—C17—C16118.0 (3)
O3—C2—N1117.1 (3)C9—C17—C16120.0 (3)
O3—C2—C1126.9 (3)H5A—O5—H5B113.1
O1i—Gd1—O1—C5−72.3 (3)C4—N2—C3—O4−178.6 (3)
O3i—Gd1—O1—C5−146.0 (3)C4—N2—C3—N10.8 (5)
O3—Gd1—O1—C510.5 (3)C2—N1—C3—O4−176.8 (3)
N3i—Gd1—O1—C5170.5 (3)C2—N1—C3—N23.9 (5)
N3—Gd1—O1—C579.2 (3)C3—N2—C4—C1−2.7 (5)
N4—Gd1—O1—C5138.3 (3)C2—C1—C4—N20.2 (5)
N4i—Gd1—O1—C5−2.7 (4)C5—C1—C4—N2−179.2 (3)
O1—Gd1—O3—C2−23.0 (3)Gd1—O1—C5—O2−176.9 (2)
O1i—Gd1—O3—C267.3 (3)Gd1—O1—C5—C13.6 (5)
O3i—Gd1—O3—C223.1 (3)C4—C1—C5—O2−15.4 (5)
N3i—Gd1—O3—C2171.5 (2)C2—C1—C5—O2165.2 (3)
N3—Gd1—O3—C2−134.3 (3)C4—C1—C5—O1164.1 (3)
N4—Gd1—O3—C2−90.5 (3)C2—C1—C5—O1−15.2 (5)
N4i—Gd1—O3—C2149.8 (3)C17—N3—C6—C72.5 (5)
O1—Gd1—N3—C6−104.0 (2)Gd1—N3—C6—C7−163.2 (3)
O1i—Gd1—N3—C68.9 (3)N3—C6—C7—C80.3 (6)
O3i—Gd1—N3—C6161.3 (2)C6—C7—C8—C9−2.0 (6)
O3—Gd1—N3—C6−36.1 (2)C7—C8—C9—C170.9 (5)
N3i—Gd1—N3—C6108.0 (3)C7—C8—C9—C10−178.9 (4)
N4—Gd1—N3—C6−175.2 (3)C8—C9—C10—C11177.3 (4)
N4i—Gd1—N3—C642.3 (2)C17—C9—C10—C11−2.5 (6)
O1—Gd1—N3—C1790.3 (2)C9—C10—C11—C12−0.4 (7)
O1i—Gd1—N3—C17−156.8 (2)C10—C11—C12—C13−177.2 (4)
O3i—Gd1—N3—C17−4.4 (3)C10—C11—C12—C162.5 (6)
O3—Gd1—N3—C17158.2 (2)C16—C12—C13—C14−0.5 (6)
N3i—Gd1—N3—C17−57.7 (2)C11—C12—C13—C14179.1 (4)
N4—Gd1—N3—C1719.1 (2)C12—C13—C14—C151.6 (6)
N4i—Gd1—N3—C17−123.4 (2)C16—N4—C15—C14−2.3 (5)
O1—Gd1—N4—C1564.5 (2)Gd1—N4—C15—C14162.0 (3)
O1i—Gd1—N4—C15−7.1 (3)C13—C14—C15—N4−0.2 (6)
O3i—Gd1—N4—C15−20.2 (2)C15—N4—C16—C123.4 (5)
O3—Gd1—N4—C15128.4 (2)Gd1—N4—C16—C12−161.8 (3)
N3i—Gd1—N4—C15−98.7 (3)C15—N4—C16—C17−176.8 (3)
N3—Gd1—N4—C15176.8 (3)Gd1—N4—C16—C1718.0 (3)
N4i—Gd1—N4—C15−139.2 (3)C13—C12—C16—N4−2.1 (5)
O1—Gd1—N4—C16−131.1 (2)C11—C12—C16—N4178.2 (3)
O1i—Gd1—N4—C16157.20 (19)C13—C12—C16—C17178.2 (3)
O3i—Gd1—N4—C16144.2 (2)C11—C12—C16—C17−1.5 (5)
O3—Gd1—N4—C16−67.3 (2)C6—N3—C17—C9−3.7 (5)
N3i—Gd1—N4—C1665.6 (2)Gd1—N3—C17—C9162.9 (2)
N3—Gd1—N4—C16−18.8 (2)C6—N3—C17—C16174.8 (3)
N4i—Gd1—N4—C1625.13 (19)Gd1—N3—C17—C16−18.6 (4)
Gd1—O3—C2—N1−158.7 (2)C8—C9—C17—N32.0 (5)
Gd1—O3—C2—C122.2 (5)C10—C9—C17—N3−178.1 (3)
C3—N1—C2—O3174.5 (3)C8—C9—C17—C16−176.4 (3)
C3—N1—C2—C1−6.2 (5)C10—C9—C17—C163.4 (5)
C4—C1—C2—O3−176.9 (3)N4—C16—C17—N30.3 (4)
C5—C1—C2—O32.5 (5)C12—C16—C17—N3−179.9 (3)
C4—C1—C2—N13.9 (4)N4—C16—C17—C9178.8 (3)
C5—C1—C2—N1−176.7 (3)C12—C16—C17—C9−1.4 (5)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.862.042.898 (3)178
N1—H1···O1ii0.862.603.160 (4)124
N2—H2···N2iii0.861.812.669 (5)174
O5—H5A···O4iv0.852.142.970 (4)164
O5—H5B···O2v0.852.142.985 (4)173

Symmetry codes: (ii) x, −y, z−1/2; (iii) −x+1/2, −y−1/2, −z; (iv) −x+1/2, −y+1/2, −z; (v) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2644).

References

  • Baran, E., Mercaser, R. C., Hueso-Ureña, F., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Salas-Peregrin, J. M. (1996). Polyhedron, 15, 1717–1724.
  • Bruker (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hueso-Ureña, F., Moreno-Carretero, M. N., Romero-Molina, M. A., Salas-Peregrin, J. M., Sanchez-Sanchez, M. P., Alvarez de Cienfuegos-Lopez, G. & Faure, R. (1993). J. Inorg. Biochem.51, 613–632.
  • Hueso-Ureña, F., Moreno-Carretero, M. N., Quirós-Olozábal, M., Salas-Peregrín, J. M., Faure, R. & Cienfuegos-López, G. A. (1996). Inorg. Chim. Acta, 241, 61–69.
  • Luo, J.-H., Hong, M.-C., Zhao, Y.-J., Cao, R. & Weng, J.-B. (2002). Chin. J. Struct. Chem.21, 392–395.
  • Maistralis, G., Katsaros, N., Mentzafos, D. & Terzis, A. (1991). Acta Cryst. C47, 740–743.
  • Maistralis, G., Katsaros, N., Perlepes, S. P. & Kovala-Demertzi, D. (1992). J. Inorg. Biochem.45, 1–12.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, C.-Y. & Jin, L.-P. (2004a). Polyhedron, 23, 2227–2233.
  • Sun, C.-Y. & Jin, L.-P. (2004b). Polyhedron, 23, 2085–2093.
  • Xing, H.-H., Chen, Z.-L. & Ng, S. W. (2008a). Acta Cryst. E64, m418. [PMC free article] [PubMed]
  • Xing, H.-H., Chen, Z.-L. & Ng, S. W. (2008b). Acta Cryst. E64, m419–m420. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography