PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1195.
Published online 2008 August 23. doi:  10.1107/S1600536808026342
PMCID: PMC2960510

Bis[2-(2-pyridylmethyl­eneamino)benzene­sulfonato-κ3 N,N′,O]zinc(II) dihydrate

Abstract

In the title complex, [Zn(C12H9N2O3S)2]·2H2O, the ZnII ion lies on a crystallographic inversion center and is coordinated by four N atoms and two O atoms from two tridentate 2-(2-pyridylmethyl­eneamino)benzene­sulfonate ligands in a slightly distorted octa­hedral environment. In the crystal structure, the complex forms a two-dimensional network through inter­molecular O—H(...)O and C—H(...)O hydrogen bonds.

Related literature

For related literature, see: Casella & Gullotti (1981 [triangle], 1986 [triangle]); Jiang et al. (2006 [triangle]); Li et al. (2006 [triangle], 2007 [triangle]); Wang et al. (1994 [triangle]); Zhang et al. (2004 [triangle], 2007 [triangle], 2008 [triangle]); Correia et al. (2003 [triangle]); Zheng et al. (2001 [triangle]); Zhou et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1195-scheme1.jpg

Experimental

Crystal data

  • [Zn(C12H9N2O3S)2]·2H2O
  • M r = 623.95
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1195-efi2.jpg
  • a = 19.7090 (15) Å
  • b = 8.0722 (6) Å
  • c = 16.3390 (13) Å
  • V = 2599.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.16 mm−1
  • T = 295 (2) K
  • 0.49 × 0.45 × 0.37 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.600, T max = 0.673
  • 17894 measured reflections
  • 2412 independent reflections
  • 2100 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.074
  • S = 1.04
  • 2412 reflections
  • 177 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026342/pk2112sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026342/pk2112Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was funded by Guangxi Science Foundation, Guangxi Zhuang Autonomous Region of the People’s Republic of China (grant No. 0731053).

supplementary crystallographic information

Comment

The design and control of supermolecular coordination complex networks in which both coordination bonds and hydrogen bonds take part in the self-assembly chemistry (Zheng, et al., 2001; Zhou, et al., 2004) have recently garnered increasing interest. Schiff base complexes that contain both sulfur and amino acid functionalities have received much attention owing to their potential applications in pharmacy. (Casella & Gullotti, 1981, 1986; Wang et al., 1994; Li et al., 2006; Zhang et al., 2007, 2008).

Our group has focused on the exploration of the coordination chemistry of the sulfonate ligands for years (Zhang et al. 2004; Jiang et al. 2006; Li et al. 2007). We report here the synthesis and the structure of the mononuclear ZnII Paba complex (Fig. 1). The structure is composed of one ZnII, two deprotonated Paba- ligands and two guest water molecules. The six-coordinated ZnII atom has a distorted octahedral geometry, being coordinated by pyridine N, imine N and sulfonate O atoms from two deprotonated Paba- ligands in a tridentate facial arrangement. This structure is similar to those reported for complexes with N,N',O-tridentate donor ligands (Li et al., 2006; Correia et al., 2003).

There are extensive hydrogen bonds (O4-H2W···O2 and O4-H1W···O3), in which the donor is O-H of the guest water and S=O acts as acceptor, which forms a two-dimension sheet structure (Fig. 2).

Experimental

The potassium salt of 2-(pyridylmethyl)imine-2-benzenesulfonic acid (PabaK) was synthesized according to the literature method (Casella & Gullotti, 1986).

To prepare the title complex, the ligand PabaK (1 mmol, 0.30 g) was dissolved in methanol (10 mL) at 333 K and an aqueous solution (10 mL) containing ZnCl2(0.5 mmol, 0.068 g) was added. The resulting solution was stirred at 333 K for 4 h, then cooled to room temperature and filtered. Yellow crystals suitable for X-ray diffraction were obtained by slow evaporation over several days, with a yield of 55%. Elemental analysis, found (%): C, 46.05; H, 3.55; N, 8.95; S, 10.42; calc (%): C, 46.16; H, 3.53; N, 8.98; S, 10.26.

Refinement

H atoms bonded to C atoms were positioned geometrically with the C-H distance of 0.93 Å, and treated as riding atoms, with Uiso(H) = 1.2Ueq(C). Water hydrogens were placed in fixed positions and assigned Uiso values of 1.5Ueq of the water oxygen atom.

Figures

Fig. 1.
An ellipsoid plot (30% probability) showing the numbering scheme. Dashed lines indicate hydrogen bonds. Symmetry code: (a) -x+1, y, -z+1/2.
Fig. 2.
2-D structure, as viewed down the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

[Zn(C12H9N2O3S1)2]·2H2OF000 = 1280
Mr = 623.95Dx = 1.594 Mg m3
Orthorhombic, PbcnMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 7323 reflections
a = 19.7090 (15) Åθ = 2.5–28.2º
b = 8.0722 (6) ŵ = 1.16 mm1
c = 16.3390 (13) ÅT = 295 (2) K
V = 2599.5 (3) Å3Block, yellow
Z = 40.49 × 0.45 × 0.37 mm

Data collection

Bruker SMART CCD area-detector diffractometer2412 independent reflections
Radiation source: fine-focus sealed tube2100 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 295(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −23→23
Tmin = 0.600, Tmax = 0.673k = −9→9
17894 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.074  w = 1/[σ2(Fo2) + (0.0373P)2 + 1.7627P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2412 reflectionsΔρmax = 0.46 e Å3
177 parametersΔρmin = −0.42 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.50000.82446 (4)0.25000.02769 (11)
S10.37616 (2)0.67719 (6)0.34320 (3)0.03070 (14)
O10.45098 (7)0.67650 (18)0.33822 (8)0.0344 (3)
O20.34865 (8)0.84229 (19)0.33446 (10)0.0456 (4)
O30.35256 (7)0.5876 (2)0.41443 (8)0.0431 (4)
N10.49613 (8)1.0216 (2)0.16032 (10)0.0341 (4)
N20.40820 (8)0.7687 (2)0.17245 (9)0.0297 (4)
C10.44459 (10)1.0145 (3)0.10605 (12)0.0332 (4)
C20.43673 (13)1.1301 (3)0.04460 (14)0.0452 (6)
H20.40071.12230.00810.054*
C30.48322 (13)1.2579 (3)0.03809 (15)0.0506 (6)
H30.47861.3380−0.00250.061*
C40.53638 (13)1.2645 (3)0.09261 (15)0.0483 (6)
H40.56881.34800.08900.058*
C50.54084 (12)1.1447 (3)0.15295 (14)0.0420 (5)
H50.57661.15030.19000.050*
C60.39854 (10)0.8728 (3)0.11481 (12)0.0354 (5)
H60.36260.85900.07860.042*
C70.36755 (9)0.6238 (3)0.17777 (12)0.0313 (4)
C80.34696 (11)0.5353 (3)0.10925 (13)0.0437 (5)
H80.35790.57360.05720.052*
C90.31015 (12)0.3900 (3)0.11817 (15)0.0524 (6)
H90.29620.33200.07200.063*
C100.29391 (13)0.3306 (3)0.19512 (16)0.0516 (6)
H100.26980.23220.20050.062*
C110.31364 (11)0.4180 (3)0.26416 (13)0.0403 (5)
H110.30220.37920.31600.048*
C120.35039 (10)0.5632 (3)0.25581 (11)0.0300 (4)
O40.29845 (11)1.0939 (4)0.44343 (14)0.1079 (10)
H1W0.25721.11440.43940.162*
H2W0.30831.01050.41580.162*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02732 (18)0.03263 (19)0.02311 (18)0.000−0.00389 (11)0.000
S10.0291 (3)0.0396 (3)0.0234 (2)−0.0001 (2)0.00018 (18)−0.0016 (2)
O10.0287 (7)0.0462 (9)0.0285 (7)−0.0028 (6)−0.0034 (6)0.0038 (6)
O20.0482 (9)0.0452 (9)0.0436 (9)0.0102 (7)−0.0018 (7)−0.0079 (7)
O30.0416 (8)0.0620 (10)0.0257 (7)−0.0062 (8)0.0039 (6)0.0035 (7)
N10.0400 (9)0.0346 (9)0.0278 (9)−0.0007 (7)−0.0057 (7)0.0011 (7)
N20.0278 (8)0.0375 (9)0.0238 (8)−0.0006 (7)0.0004 (6)0.0004 (7)
C10.0343 (10)0.0377 (11)0.0275 (10)0.0035 (9)−0.0036 (8)0.0023 (8)
C20.0519 (14)0.0471 (13)0.0367 (12)0.0017 (11)−0.0113 (10)0.0096 (10)
C30.0728 (17)0.0386 (13)0.0403 (13)−0.0023 (12)−0.0064 (12)0.0105 (11)
C40.0628 (15)0.0363 (12)0.0458 (13)−0.0117 (11)−0.0019 (11)0.0022 (10)
C50.0490 (13)0.0391 (12)0.0380 (12)−0.0084 (10)−0.0102 (10)0.0012 (9)
C60.0310 (11)0.0475 (12)0.0276 (10)0.0001 (9)−0.0057 (8)0.0034 (9)
C70.0245 (10)0.0410 (11)0.0284 (10)−0.0009 (8)−0.0004 (8)−0.0015 (9)
C80.0417 (12)0.0609 (15)0.0286 (11)−0.0085 (11)0.0014 (9)−0.0050 (10)
C90.0505 (14)0.0679 (16)0.0389 (13)−0.0180 (13)−0.0001 (11)−0.0169 (12)
C100.0464 (14)0.0552 (15)0.0530 (15)−0.0211 (12)0.0021 (11)−0.0085 (12)
C110.0363 (12)0.0495 (13)0.0351 (11)−0.0088 (10)0.0038 (9)0.0017 (10)
C120.0232 (9)0.0399 (11)0.0270 (10)−0.0007 (8)−0.0001 (7)−0.0023 (8)
O40.0592 (13)0.168 (3)0.0964 (18)0.0323 (15)−0.0209 (12)−0.0725 (19)

Geometric parameters (Å, °)

Zn1—O12.1065 (14)C3—C41.376 (3)
Zn1—O1i2.1065 (14)C3—H30.9300
Zn1—N1i2.1643 (18)C4—C51.384 (3)
Zn1—N12.1643 (18)C4—H40.9300
Zn1—N22.2544 (16)C5—H50.9300
Zn1—N2i2.2544 (16)C6—H60.9300
S1—O21.4459 (16)C7—C81.389 (3)
S1—O31.4470 (15)C7—C121.407 (3)
S1—O11.4769 (14)C8—C91.387 (3)
S1—C121.7730 (19)C8—H80.9300
N1—C51.334 (3)C9—C101.383 (3)
N1—C11.350 (2)C9—H90.9300
N2—C61.277 (3)C10—C111.386 (3)
N2—C71.421 (3)C10—H100.9300
C1—C21.380 (3)C11—C121.384 (3)
C1—C61.467 (3)C11—H110.9300
C2—C31.384 (3)O4—H1W0.8332
C2—H20.9300O4—H2W0.8339
O1—Zn1—O1i110.92 (8)C3—C2—H2120.5
O1—Zn1—N1i88.27 (6)C4—C3—C2118.9 (2)
O1i—Zn1—N1i149.76 (6)C4—C3—H3120.6
O1—Zn1—N1149.76 (6)C2—C3—H3120.6
O1i—Zn1—N188.27 (6)C3—C4—C5118.9 (2)
N1i—Zn1—N185.36 (9)C3—C4—H4120.6
O1—Zn1—N284.45 (5)C5—C4—H4120.6
O1i—Zn1—N282.55 (5)N1—C5—C4122.9 (2)
N1i—Zn1—N2123.75 (6)N1—C5—H5118.5
N1—Zn1—N274.81 (6)C4—C5—H5118.5
O1—Zn1—N2i82.55 (5)N2—C6—C1119.53 (18)
O1i—Zn1—N2i84.45 (5)N2—C6—H6120.2
N1i—Zn1—N2i74.81 (6)C1—C6—H6120.2
N1—Zn1—N2i123.75 (6)C8—C7—C12118.80 (19)
N2—Zn1—N2i156.97 (9)C8—C7—N2122.62 (18)
O2—S1—O3114.81 (10)C12—C7—N2118.51 (17)
O2—S1—O1111.87 (9)C9—C8—C7120.2 (2)
O3—S1—O1111.31 (9)C9—C8—H8119.9
O2—S1—C12106.94 (9)C7—C8—H8119.9
O3—S1—C12107.23 (9)C10—C9—C8120.7 (2)
O1—S1—C12103.86 (9)C10—C9—H9119.7
S1—O1—Zn1119.57 (8)C8—C9—H9119.7
C5—N1—C1118.00 (18)C9—C10—C11119.9 (2)
C5—N1—Zn1125.86 (14)C9—C10—H10120.1
C1—N1—Zn1116.11 (14)C11—C10—H10120.1
C6—N2—C7120.22 (17)C12—C11—C10119.8 (2)
C6—N2—Zn1113.76 (14)C12—C11—H11120.1
C7—N2—Zn1125.63 (12)C10—C11—H11120.1
N1—C1—C2122.3 (2)C11—C12—C7120.62 (18)
N1—C1—C6115.76 (17)C11—C12—S1120.65 (15)
C2—C1—C6121.93 (19)C7—C12—S1118.73 (15)
C1—C2—C3119.1 (2)H1W—O4—H2W110.2
C1—C2—H2120.5

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H1W···O3ii0.832.213.014 (3)162
O4—H2W···O20.832.062.877 (3)166
C4—H4···O3iii0.932.483.407 (3)175
C6—H6···O4iv0.932.573.436 (3)155

Symmetry codes: (ii) −x+1/2, y+1/2, z; (iii) −x+1, y+1, −z+1/2; (iv) x, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2112).

References

  • Bruker (2004). SMART and SAINT Bruker AXS inc., Madison, WI, USA.
  • Casella, L. & Gullotti, M. (1981). J. Am. Chem. Soc.103, 6338–6347.
  • Casella, L. & Gullotti, M. (1986). Inorg. Chem.25, 1293–1303.
  • Correia, V. R., Bortoluzzi, A. J., Neves, A., Joussef, A. C., Vieira, M. G. M. & Batista, S. C. (2003). Acta Cryst. E59, m464–m466.
  • Jiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem.25, 767–770.
  • Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984–m2986.
  • Li, H.-Y., Liao, B.-L., Jiang, Y.-M., Zhang, S.-H. & Li, J.-X. (2007). Chin. J. Struct. Chem.26, 907–910.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Z., Wu, Z., Yen, Z., Le, Z., Zhu, X. & Huang, Q. (1994). Synth. React. Inorg. Metal Org. Chem.24, 1453–1460.
  • Zhang, S. H., Jiang, Y.-M. & Liu, Z. M. (2008). J. Coord. Chem.61, 1927–1934.
  • Zhang, S.-H., Jiang, Y.-M., Liu, Z. & Zhou, Z.-Y. (2004). Chin. J. Struct. Chem.23, 882–885.
  • Zhang, S. H., Li, G.-Z., Zhong, F. & Feng, X.-Z. (2007). Chin. J. Struct. Chem.26, 1491–1494.
  • Zheng, S.-L., Tong, M.-L., Yu, X.-L. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans pp. 586–592.
  • Zhou, J.-S., Cai, J.-W., Wang, L. & Ng, S.-W. (2004). Dalton Trans pp. 1493–1497. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography