PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1114–m1115.
Published online 2008 August 6. doi:  10.1107/S1600536808024422
PMCID: PMC2960500

Dichlorido(dimethyl­formamide-κO)[1,4,7-tris­(2-cyano­ethyl)-1,4,7-triaza­cyclo­nonane-κ3 N 1,N 4,N 7]nickel(II)

Abstract

The title complex, [NiCl2(C15H24N6)(C3H7NO)], is isomorphous with the CoII analogue. Three N-atom donors from the facially coordinating triaza macrocyclic ligand, one O-atom donor from dimethyl­formamide and two Cl anions surround the NiII ion in a distorted octa­hedral coordination geometry. Inter­molecular C—H(...)Cl and C—H(...)N hydrogen-bonding inter­actions link the complex mol­ecules into a three-dimensional supra­molecular architecture.

Related literature

For related literature, see: Graham et al. (2005 [triangle]); Li et al. (2005 [triangle]); Schlager et al. (1995 [triangle]); Tei et al. (1998 [triangle] and 2003 [triangle]). For the isostructural Co complex, see: Zhang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1114-scheme1.jpg

Experimental

Crystal data

  • [NiCl2(C15H24N6)(C3H7NO)]
  • M r = 491.11
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1114-efi1.jpg
  • a = 9.7657 (10) Å
  • b = 19.698 (2) Å
  • c = 12.3504 (13) Å
  • β = 97.676 (2)°
  • V = 2354.5 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.07 mm−1
  • T = 298 (2) K
  • 0.32 × 0.24 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.725, T max = 0.798
  • 12684 measured reflections
  • 4616 independent reflections
  • 3371 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.115
  • S = 1.00
  • 4616 reflections
  • 265 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024422/bh2184sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024422/bh2184Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the National Natural Science Foundation of China (grant No. 20475026).

supplementary crystallographic information

Comment

1,4,7-Triazacyclononane ([9]aneN3) derivatives with nitrile pendant arms have attracted much interest since these triazamacrocyclic ligands can promote the assembly of multi-dimensional polymeric compounds with AgI (Tei et al., 1998). However, these triazamacrocyclic ligands exhibit different coordination behaviors when coordinating to CuII and only mononuclear CuII complexes of these ligands can be obtained, where the nitrile pendant arms are not involved in the metal coordination (Tei et al., 2003). Herein, we report the synthesis and crystal structure of a monomeric NiII complex containing 1,4,7-tris(2-cyanoethyl)-1,4,7-triazacyclononane, (I), which is isostructural to its cobalt-containing analogue (Zhang et al., 2008).

As depicted in Fig. 1, the NiII ion in this complex is ligated by a [N3OCl2] donor set consisting of three N atoms from the [9]aneN3 backbone, an O atom from a dimethylformamide molecule and two Cl- anions. The twist angle is ca. 57.6° (Schlager et al. 1995), indicating that the coordination geometry around NiII is slightly distorted from regular octahedral. All bond lengths around NiII ion (Table 1) are comparable to those observed in related NiII complexes (Graham et al. 2005; Li et al. 2005). Pendant 2-cyanoethyl groups attached to the [9]aneN3 framework are not involved in the coordination to the NiII center and point away from the macrocyclic cavity.

Two coordinated Cl- anions participate in the formation of multiple C—H···Cl hydrogen bonds (Table 2), which serve to link the complexes into two-dimensional sheets parallel to (010). These sheets are further connected through C—H···N hydrogen bonds, generating a three-dimensional supramolecular network (Fig. 2).

Experimental

The triazamacrocyclic ligand 1,4,7-tris(2-cyanoethyl)-1,4,7-triazacyclononane was prepared following a literature procedure (Tei et al., 1998). A mixture of the triazamacrocyclic ligand (29 mg, 0.1 mmol) and NiCl2.6H2O (24 mg, 0.1 mmol) in MeOH (10 ml) was refluxed for 2 h. The precipitated green solid was filtered off and subsequently dissolved in dimethylformamide. Green single crystals of (I) suitable for X-ray diffraction analysis were obtained by slow diffusion of diethyl ether into the dimethylformamide solution. (yield: 31 mg, 63.2%). Analysis: found C 43.87, H 6.53, N 20.04%; calculated for C18H31Cl2N7NiO C 44.02, H 6.36, N 19.97%.

Refinement

All H atoms were placed in calculated positions and treated in the subsequent refinement as riding atoms, with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level (arbitrary radii spheres for H atoms).
Fig. 2.
Packing diagram of the title compound, showing the three-dimensional network formed through intermolecular C—H···Cl and C—H···N hydrogen bonds (dashed lines). For clarity, H atoms not involved ...

Crystal data

[NiCl2(C15H24N6)(C3H7NO)]F000 = 1032
Mr = 491.11Dx = 1.385 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2569 reflections
a = 9.7657 (10) Åθ = 2.4–23.0º
b = 19.698 (2) ŵ = 1.07 mm1
c = 12.3504 (13) ÅT = 298 (2) K
β = 97.676 (2)ºCell measurement pressure: 101(2) kPa
V = 2354.5 (4) Å3Block, green
Z = 40.32 × 0.24 × 0.22 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer4616 independent reflections
Radiation source: sealed tube3371 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.050
T = 298(2) Kθmax = 26.0º
ω and [var phi] scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −12→12
Tmin = 0.725, Tmax = 0.798k = −24→19
12684 measured reflectionsl = −14→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.115  w = 1/[σ2(Fo2) + (0.05P)2 + 1.55P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4616 reflectionsΔρmax = 0.32 e Å3
265 parametersΔρmin = −0.48 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2245 (3)0.82135 (19)0.3865 (3)0.0332 (8)
H1A0.23890.78060.43070.040*
H1B0.22510.85990.43550.040*
C20.3401 (4)0.8287 (2)0.3188 (3)0.0362 (8)
H2B0.42770.82380.36540.043*
H2A0.33710.87380.28700.043*
C30.3526 (4)0.70715 (18)0.2734 (3)0.0349 (8)
H3A0.34790.70780.35140.042*
H3B0.44370.69120.26240.042*
C40.2440 (4)0.65873 (18)0.2181 (3)0.0366 (8)
H4A0.26210.65010.14400.044*
H4B0.25030.61580.25710.044*
C50.0623 (4)0.69268 (18)0.3255 (3)0.0366 (8)
H5A0.14270.68520.37920.044*
H5B−0.00440.65740.33490.044*
C60.0012 (4)0.75946 (19)0.3469 (3)0.0343 (8)
H6B−0.00910.76260.42380.041*
H6A−0.09010.76280.30530.041*
C70.0122 (4)0.88213 (18)0.3182 (3)0.0342 (8)
H7A−0.05410.88410.25240.041*
H7B0.07800.91850.31360.041*
C8−0.0650 (4)0.8969 (2)0.4150 (3)0.0414 (9)
H8A−0.11060.94050.40290.050*
H8B−0.13640.86280.41640.050*
C90.0205 (5)0.8984 (2)0.5247 (4)0.0558 (12)
C100.4296 (4)0.7914 (2)0.1522 (3)0.0368 (8)
H10A0.39660.83100.10970.044*
H10B0.42800.75350.10190.044*
C110.5811 (4)0.8044 (2)0.2007 (3)0.0421 (9)
H11A0.60350.77640.26510.051*
H11B0.64080.79070.14780.051*
C120.6089 (4)0.8739 (2)0.2298 (4)0.0464 (10)
C130.0002 (4)0.64777 (18)0.1412 (3)0.0399 (9)
H13A0.02190.65360.06740.048*
H13B−0.08940.66850.14400.048*
C14−0.0142 (5)0.5712 (2)0.1616 (4)0.0497 (10)
H14A−0.01320.56350.23930.060*
H14B−0.10260.55580.12470.060*
C150.0981 (5)0.5304 (2)0.1224 (4)0.0562 (12)
C160.1301 (4)0.90640 (19)0.0180 (3)0.0386 (9)
H160.06910.8790−0.02690.046*
C170.2656 (6)1.0076 (3)0.0392 (4)0.0698 (16)
H17A0.25121.00690.11450.105*
H17B0.25241.05290.01110.105*
H17C0.35800.99290.03300.105*
C180.1201 (6)0.9843 (3)−0.1349 (4)0.0695 (15)
H18A0.06610.9484−0.17180.104*
H18B0.19770.9938−0.17260.104*
H18C0.06411.0243−0.13390.104*
Cl10.17488 (9)0.74622 (4)−0.02223 (7)0.0322 (2)
Cl2−0.11545 (8)0.80646 (4)0.07904 (7)0.0317 (2)
N10.0873 (3)0.81727 (13)0.3173 (2)0.0270 (6)
N20.3315 (3)0.77684 (15)0.2292 (2)0.0330 (7)
N30.1036 (3)0.68642 (15)0.2155 (2)0.0329 (6)
N40.0800 (4)0.8977 (2)0.6093 (3)0.0572 (10)
N50.6267 (4)0.9299 (2)0.2485 (3)0.0616 (11)
N60.1815 (4)0.4987 (2)0.0903 (3)0.0617 (11)
N70.1697 (4)0.96334 (18)−0.0217 (3)0.0538 (10)
Ni10.12289 (5)0.78712 (2)0.15350 (4)0.03039 (14)
O10.1693 (3)0.88679 (12)0.11226 (19)0.0358 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0328 (19)0.042 (2)0.0252 (18)0.0027 (15)0.0034 (14)−0.0026 (15)
C20.0270 (17)0.048 (2)0.032 (2)0.0031 (15)−0.0006 (14)−0.0051 (16)
C30.0298 (18)0.042 (2)0.0324 (19)0.0158 (15)0.0016 (14)0.0045 (16)
C40.054 (2)0.0288 (18)0.0279 (19)0.0061 (16)0.0081 (16)0.0058 (15)
C50.048 (2)0.0265 (18)0.037 (2)−0.0006 (15)0.0106 (17)0.0025 (15)
C60.0291 (18)0.040 (2)0.034 (2)−0.0007 (15)0.0077 (15)0.0037 (16)
C70.043 (2)0.0294 (19)0.0311 (19)0.0040 (15)0.0103 (16)−0.0047 (15)
C80.045 (2)0.043 (2)0.038 (2)0.0070 (17)0.0135 (17)−0.0058 (17)
C90.068 (3)0.063 (3)0.042 (3)−0.014 (2)0.027 (2)−0.018 (2)
C100.0333 (19)0.050 (2)0.0278 (19)−0.0001 (16)0.0079 (15)−0.0020 (16)
C110.0308 (19)0.066 (3)0.032 (2)0.0045 (18)0.0121 (16)0.0035 (18)
C120.031 (2)0.049 (3)0.061 (3)−0.0012 (18)0.0136 (18)0.002 (2)
C130.041 (2)0.029 (2)0.048 (2)−0.0078 (16)0.0020 (17)0.0043 (16)
C140.057 (3)0.040 (2)0.054 (3)−0.0087 (19)0.013 (2)−0.0047 (19)
C150.049 (3)0.042 (2)0.075 (3)0.004 (2)−0.003 (2)−0.021 (2)
C160.043 (2)0.039 (2)0.035 (2)−0.0012 (16)0.0080 (17)0.0145 (16)
C170.079 (4)0.061 (3)0.061 (3)−0.036 (3)−0.020 (3)0.020 (2)
C180.074 (3)0.068 (3)0.062 (3)−0.012 (3)−0.006 (3)0.035 (3)
Cl10.0318 (4)0.0364 (5)0.0285 (4)0.0003 (3)0.0045 (3)−0.0005 (3)
Cl20.0306 (4)0.0356 (4)0.0287 (4)0.0001 (3)0.0038 (3)−0.0004 (3)
N10.0264 (14)0.0266 (14)0.0287 (15)0.0040 (11)0.0064 (11)0.0023 (11)
N20.0238 (15)0.0357 (17)0.0401 (18)−0.0016 (12)0.0066 (12)−0.0054 (13)
N30.0339 (15)0.0323 (16)0.0330 (16)−0.0026 (12)0.0057 (12)0.0018 (13)
N40.059 (2)0.074 (3)0.041 (2)−0.003 (2)0.0162 (18)−0.0245 (19)
N50.058 (2)0.063 (3)0.071 (3)−0.016 (2)0.034 (2)−0.020 (2)
N60.070 (3)0.055 (2)0.060 (3)0.010 (2)0.009 (2)−0.0248 (19)
N70.070 (2)0.045 (2)0.045 (2)−0.0092 (18)0.0022 (18)0.0168 (17)
Ni10.0296 (2)0.0339 (3)0.0277 (2)−0.00010 (18)0.00394 (17)0.00023 (19)
O10.0419 (14)0.0377 (14)0.0267 (13)−0.0016 (11)0.0002 (11)0.0069 (11)

Geometric parameters (Å, °)

C1—N11.492 (4)C10—H10A0.9700
C1—C21.499 (5)C10—H10B0.9700
C1—H1A0.9700C11—C121.433 (6)
C1—H1B0.9700C11—H11A0.9700
C2—N21.500 (5)C11—H11B0.9700
C2—H2B0.9700C12—N51.134 (6)
C2—H2A0.9700C13—N31.480 (5)
C3—N21.482 (5)C13—C141.538 (5)
C3—C41.518 (5)C13—H13A0.9700
C3—H3A0.9700C13—H13B0.9700
C3—H3B0.9700C14—C151.491 (6)
C4—N31.473 (5)C14—H14A0.9700
C4—H4A0.9700C14—H14B0.9700
C4—H4B0.9700C15—N61.139 (6)
C5—N31.473 (5)C16—O11.238 (4)
C5—C61.483 (5)C16—N71.304 (5)
C5—H5A0.9700C16—H160.9300
C5—H5B0.9700C17—N71.419 (6)
C6—N11.490 (4)C17—H17A0.9600
C6—H6B0.9700C17—H17B0.9600
C6—H6A0.9700C17—H17C0.9600
C7—N11.474 (4)C18—N71.476 (6)
C7—C81.524 (5)C18—H18A0.9600
C7—H7A0.9700C18—H18B0.9600
C7—H7B0.9700C18—H18C0.9600
C8—C91.493 (6)Cl1—Ni12.4315 (10)
C8—H8A0.9700Cl2—Ni12.4158 (10)
C8—H8B0.9700N1—Ni12.180 (3)
C9—N41.126 (6)N2—Ni12.134 (3)
C10—N21.466 (4)N3—Ni12.144 (3)
C10—C111.541 (5)Ni1—O12.093 (2)
N1—C1—C2111.8 (3)C14—C13—H13A107.8
N1—C1—H1A109.3N3—C13—H13B107.8
C2—C1—H1A109.3C14—C13—H13B107.8
N1—C1—H1B109.3H13A—C13—H13B107.1
C2—C1—H1B109.3C15—C14—C13112.9 (4)
H1A—C1—H1B107.9C15—C14—H14A109.0
C1—C2—N2111.9 (3)C13—C14—H14A109.0
C1—C2—H2B109.2C15—C14—H14B109.0
N2—C2—H2B109.2C13—C14—H14B109.0
C1—C2—H2A109.2H14A—C14—H14B107.8
N2—C2—H2A109.2N6—C15—C14178.3 (5)
H2B—C2—H2A107.9O1—C16—N7123.5 (4)
N2—C3—C4111.2 (3)O1—C16—H16118.2
N2—C3—H3A109.4N7—C16—H16118.2
C4—C3—H3A109.4N7—C17—H17A109.5
N2—C3—H3B109.4N7—C17—H17B109.5
C4—C3—H3B109.4H17A—C17—H17B109.5
H3A—C3—H3B108.0N7—C17—H17C109.5
N3—C4—C3111.7 (3)H17A—C17—H17C109.5
N3—C4—H4A109.3H17B—C17—H17C109.5
C3—C4—H4A109.3N7—C18—H18A109.5
N3—C4—H4B109.3N7—C18—H18B109.5
C3—C4—H4B109.3H18A—C18—H18B109.5
H4A—C4—H4B107.9N7—C18—H18C109.5
N3—C5—C6113.9 (3)H18A—C18—H18C109.5
N3—C5—H5A108.8H18B—C18—H18C109.5
C6—C5—H5A108.8C7—N1—C6111.3 (3)
N3—C5—H5B108.8C7—N1—C1111.0 (3)
C6—C5—H5B108.8C6—N1—C1113.2 (3)
H5A—C5—H5B107.7C7—N1—Ni1112.6 (2)
C5—C6—N1112.3 (3)C6—N1—Ni1100.7 (2)
C5—C6—H6B109.1C1—N1—Ni1107.69 (19)
N1—C6—H6B109.1C10—N2—C3110.5 (3)
C5—C6—H6A109.1C10—N2—C2111.6 (3)
N1—C6—H6A109.1C3—N2—C2111.5 (3)
H6B—C6—H6A107.9C10—N2—Ni1111.5 (2)
N1—C7—C8118.1 (3)C3—N2—Ni1109.1 (2)
N1—C7—H7A107.8C2—N2—Ni1102.4 (2)
C8—C7—H7A107.8C4—N3—C5112.3 (3)
N1—C7—H7B107.8C4—N3—C13112.3 (3)
C8—C7—H7B107.8C5—N3—C13111.5 (3)
H7A—C7—H7B107.1C4—N3—Ni1103.0 (2)
C9—C8—C7116.1 (3)C5—N3—Ni1107.4 (2)
C9—C8—H8A108.3C13—N3—Ni1109.9 (2)
C7—C8—H8A108.3C16—N7—C17122.5 (4)
C9—C8—H8B108.3C16—N7—C18121.4 (4)
C7—C8—H8B108.3C17—N7—C18116.1 (4)
H8A—C8—H8B107.4O1—Ni1—N288.31 (10)
N4—C9—C8176.6 (5)O1—Ni1—N3170.81 (11)
N2—C10—C11117.2 (3)N2—Ni1—N383.12 (11)
N2—C10—H10A108.0O1—Ni1—N192.12 (10)
C11—C10—H10A108.0N2—Ni1—N183.15 (11)
N2—C10—H10B108.0N3—Ni1—N183.59 (11)
C11—C10—H10B108.0O1—Ni1—Cl289.34 (7)
H10A—C10—H10B107.2N2—Ni1—Cl2175.06 (8)
C12—C11—C10113.4 (3)N3—Ni1—Cl298.94 (8)
C12—C11—H11A108.9N1—Ni1—Cl292.60 (8)
C10—C11—H11A108.9O1—Ni1—Cl190.90 (7)
C12—C11—H11B108.9N2—Ni1—Cl193.35 (8)
C10—C11—H11B108.9N3—Ni1—Cl192.91 (8)
H11A—C11—H11B107.7N1—Ni1—Cl1175.31 (8)
N5—C12—C11176.7 (5)Cl2—Ni1—Cl191.02 (3)
N3—C13—C14118.2 (3)C16—O1—Ni1118.2 (2)
N3—C13—H13A107.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl2i0.972.763.667 (4)156
C2—H2A···O10.972.543.076 (5)115
C3—H3A···Cl2i0.972.803.756 (4)168
C7—H7A···Cl20.972.633.394 (4)135
C10—H10A···O10.972.483.147 (5)126
C10—H10B···Cl10.972.733.192 (4)110
C11—H11A···Cl1i0.972.663.565 (4)155
C11—H11B···Cl2ii0.972.653.497 (4)146
C13—H13A···Cl10.972.693.415 (4)132
C16—H16···Cl10.932.813.233 (4)109
C16—H16···Cl20.932.763.268 (4)115
C18—H18B···N5iii0.962.553.445 (7)155

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) x+1, y, z; (iii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2184).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Graham, B., Spiccia, L., Batten, S. R., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 3983–3994.
  • Li, Q.-X., Luo, Q.-H., Li, Y.-Z., Duan, C.-Y. & Tu, Q.-Y. (2005). Inorg. Chim. Acta, 358, 504–512.
  • Schlager, O., Wieghardt, K., Grondey, H., Rufinska, A. & Nuber, B. (1995). Inorg. Chem.34, 6440–6448.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tei, L., Blake, A. J., Lippolis, V., Wilson, C. & Schröder, M. (2003). J. Chem. Soc. Dalton Trans. pp. 304–310.
  • Tei, L., Lippolis, V., Blake, A. J., Cooke, P. A. & Schröder, M. (1998). Chem. Commun. pp. 2633–2634.
  • Zhang, Z., Geng, Z.-R., Zhao, Q. & Wang, Z.-L. (2008). Acta Cryst. E64, m1041–m1042. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography