PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1694.
Published online 2008 August 6. doi:  10.1107/S1600536808024471
PMCID: PMC2960496

4-Chloro-N′-(2-hydroxy­benzyl­idene)benzohydrazide monohydrate

Abstract

The asymmetric unit of the title compound, C14H11ClN2O2·H2O, contains a Schiff base mol­ecule and a water mol­ecule of crystallization. The dihedral angle between the two aromatic rings is 27.3 (4)°. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to the bc plane by inter­molecular O—H(...)O and N—H(...)O hydrogen bonds involving the water mol­ecules.

Related literature

For general background on Schiff bases derived from condensation of aldehydes with benzohydrazides, see: Fun et al. (2008 [triangle]); Alhadi et al. (2008 [triangle]); Ali et al. (2007 [triangle]); Zou et al. (2004 [triangle]); Shan et al. (2008 [triangle]); Bedia et al. (2006 [triangle]); Terzioglu & Gürsoy (2003 [triangle]). For related structures, see: Nie (2008 [triangle]); He (2008 [triangle]); Shi et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1694-scheme1.jpg

Experimental

Crystal data

  • C14H11ClN2O2·H2O
  • M r = 292.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1694-efi1.jpg
  • a = 22.397 (3) Å
  • b = 4.853 (2) Å
  • c = 12.642 (3) Å
  • β = 97.15 (3)°
  • V = 1363.4 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 298 (2) K
  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.937, T max = 0.945
  • 10537 measured reflections
  • 2946 independent reflections
  • 1251 reflections with I > 2σ(I)
  • R int = 0.106

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.214
  • S = 0.99
  • 2946 reflections
  • 191 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808024471/ci2647sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024471/ci2647Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Shaanxi University of Technology for the research fund.

supplementary crystallographic information

Comment

Schiff bases derived from the condensation of aldehydes with benzohydrazides have been widely investigated, either for their structures (Fun et al., 2008; Alhadi et al., 2008; Ali et al., 2007; Zou et al., 2004; Shan et al., 2008) or for their biological properties (Bedia et al., 2006; Terzioglu & Gürsoy, 2003). This study extends the structural study on such compounds.

The asymmetric unit of the title compound consists of a Schiff base molecule and a water molecule of crystallization (Fig. 1). The bond lengths are within normal values (Allen et al., 1987), and comparable to the values observed in related compounds (Nie, 2008; He, 2008; Shi et al., 2007). The dihedral angle between the two aromatic rings in the Schiff base molecule is 27.3 (4)°. An intramolecular O—H···N hydrogen bond is observed.

In the crystal structure, the molecules are linked into a two-dimensional network parallel to the bc plane by intermolecular O–H···O and N–H···O hydrogen bonds (Table 1) involving the water molecules (Fig. 2).

Experimental

The title compound was prepared by the Schiff base condensation of salicylaldehyde (0.1 mol) and 4-chlorobenzohydrazide (0.1 mmol) in ethanol (50 ml). The excess ethanol was removed by distillation. The colourless solid formed was filtered and washed with ethanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

The imino and water H atoms were located in a difference map and refined with N–H, O–H and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2)Å, respectively. The other H atoms were positioned geometrically [C–H = 0.93 Å and O–H = 0.82Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O1).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.
Fig. 2.
The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H11ClN2O2·H2OF000 = 608
Mr = 292.71Dx = 1.426 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 600 reflections
a = 22.397 (3) Åθ = 2.6–24.5º
b = 4.853 (2) ŵ = 0.29 mm1
c = 12.642 (3) ÅT = 298 (2) K
β = 97.15 (3)ºBlock, colourless
V = 1363.4 (7) Å30.23 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer2946 independent reflections
Radiation source: fine-focus sealed tube1251 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.106
T = 298(2) Kθmax = 27.0º
ω scansθmin = 0.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −28→28
Tmin = 0.937, Tmax = 0.945k = −6→6
10537 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.214  w = 1/[σ2(Fo2) + (0.0902P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2946 reflectionsΔρmax = 0.27 e Å3
191 parametersΔρmin = −0.27 e Å3
4 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.02717 (6)1.4002 (3)0.66329 (12)0.0731 (5)
N20.24096 (15)0.4463 (8)0.6210 (3)0.0392 (9)
C80.21035 (19)0.5999 (9)0.5457 (3)0.0412 (11)
N10.28603 (15)0.2706 (7)0.5952 (3)0.0420 (10)
O20.21956 (14)0.5852 (6)0.4508 (2)0.0538 (9)
C90.16460 (18)0.7918 (8)0.5783 (3)0.0365 (10)
C140.16219 (18)0.8667 (9)0.6822 (3)0.0426 (12)
H140.18930.78950.73590.051*
C10.35917 (19)−0.0643 (9)0.6600 (3)0.0415 (11)
C70.31165 (18)0.1242 (9)0.6720 (3)0.0428 (12)
H70.29870.14160.73880.051*
O10.36902 (17)0.0745 (9)0.4810 (3)0.0779 (12)
H10.34470.18970.49630.117*
C110.0808 (2)1.0889 (10)0.5252 (4)0.0537 (13)
H110.05311.16310.47200.064*
C120.07965 (19)1.1639 (9)0.6292 (4)0.0457 (12)
C130.1200 (2)1.0561 (10)0.7088 (4)0.0512 (13)
H130.11911.10860.77930.061*
C20.3871 (2)−0.0802 (11)0.5669 (4)0.0536 (13)
C100.12292 (19)0.9047 (10)0.4998 (3)0.0466 (12)
H100.12360.85430.42900.056*
C60.3802 (2)−0.2325 (10)0.7435 (4)0.0577 (14)
H60.3624−0.22360.80600.069*
C40.4539 (2)−0.4315 (13)0.6486 (5)0.0726 (17)
H40.4851−0.55580.64430.087*
C50.4271 (2)−0.4144 (11)0.7380 (5)0.0656 (15)
H50.4402−0.52550.79620.079*
C30.4344 (2)−0.2616 (12)0.5632 (5)0.0739 (17)
H30.4536−0.26970.50210.089*
O30.23525 (17)0.0885 (7)0.3450 (2)0.0568 (9)
H20.236 (2)0.445 (11)0.6905 (12)0.080*
H3B0.245 (2)−0.049 (5)0.385 (3)0.080*
H3A0.235 (2)0.234 (5)0.381 (3)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0598 (8)0.0587 (9)0.1059 (12)0.0176 (7)0.0301 (8)0.0051 (9)
N20.042 (2)0.044 (2)0.0329 (19)0.0072 (18)0.0065 (17)0.002 (2)
C80.044 (3)0.040 (3)0.039 (3)0.000 (2)0.003 (2)0.004 (2)
N10.041 (2)0.042 (2)0.044 (2)0.0057 (19)0.0121 (18)−0.006 (2)
O20.078 (2)0.050 (2)0.0345 (18)0.0109 (18)0.0142 (16)0.0034 (16)
C90.038 (2)0.030 (3)0.041 (3)−0.002 (2)0.005 (2)0.003 (2)
C140.045 (3)0.046 (3)0.035 (3)0.005 (2)−0.001 (2)0.004 (2)
C10.037 (2)0.038 (3)0.049 (3)−0.001 (2)0.003 (2)−0.007 (2)
C70.044 (3)0.052 (3)0.033 (2)0.005 (2)0.005 (2)−0.001 (2)
O10.084 (3)0.098 (3)0.054 (2)0.030 (2)0.0195 (19)0.002 (2)
C110.050 (3)0.058 (3)0.053 (3)0.001 (3)0.001 (2)0.005 (3)
C120.040 (2)0.033 (3)0.065 (3)0.004 (2)0.010 (2)0.007 (2)
C130.053 (3)0.051 (3)0.050 (3)0.006 (3)0.010 (2)−0.001 (3)
C20.051 (3)0.061 (4)0.048 (3)0.009 (3)0.004 (2)−0.005 (3)
C100.044 (3)0.054 (3)0.041 (3)0.007 (3)0.003 (2)0.004 (3)
C60.050 (3)0.055 (3)0.066 (3)0.003 (3)−0.002 (3)−0.005 (3)
C40.051 (3)0.068 (4)0.096 (5)0.019 (3)−0.001 (3)−0.024 (4)
C50.063 (4)0.050 (4)0.077 (4)−0.001 (3)−0.019 (3)−0.002 (3)
C30.064 (4)0.078 (4)0.083 (4)0.017 (3)0.020 (3)−0.025 (4)
O30.091 (2)0.047 (2)0.0328 (17)−0.007 (2)0.0107 (17)−0.0014 (17)

Geometric parameters (Å, °)

Cl1—C121.735 (4)C11—C101.366 (6)
N2—C81.330 (5)C11—C121.367 (6)
N2—N11.391 (5)C11—H110.93
N2—H20.899 (10)C12—C131.370 (6)
C8—O21.245 (5)C13—H130.93
C8—C91.481 (6)C2—C31.384 (7)
N1—C71.280 (5)C10—H100.93
C9—C141.370 (6)C6—C51.380 (7)
C9—C101.388 (6)C6—H60.93
C14—C131.390 (6)C4—C51.346 (7)
C14—H140.93C4—C31.386 (7)
C1—C61.371 (6)C4—H40.93
C1—C21.401 (6)C5—H50.93
C1—C71.426 (6)C3—H30.93
C7—H70.93O3—H3B0.85 (3)
O1—C21.340 (5)O3—H3A0.84 (3)
O1—H10.82
C8—N2—N1120.0 (3)C11—C12—Cl1120.7 (4)
C8—N2—H2126 (3)C13—C12—Cl1118.3 (4)
N1—N2—H2114 (3)C12—C13—C14118.8 (4)
O2—C8—N2121.7 (4)C12—C13—H13120.6
O2—C8—C9120.5 (4)C14—C13—H13120.6
N2—C8—C9117.8 (4)O1—C2—C3119.0 (5)
C7—N1—N2115.6 (3)O1—C2—C1121.9 (4)
C14—C9—C10118.5 (4)C3—C2—C1119.1 (5)
C14—C9—C8123.0 (4)C11—C10—C9120.8 (4)
C10—C9—C8118.4 (4)C11—C10—H10119.6
C9—C14—C13121.1 (4)C9—C10—H10119.6
C9—C14—H14119.5C1—C6—C5122.2 (5)
C13—C14—H14119.5C1—C6—H6118.9
C6—C1—C2117.9 (4)C5—C6—H6118.9
C6—C1—C7119.3 (4)C5—C4—C3119.1 (5)
C2—C1—C7122.8 (4)C5—C4—H4120.4
N1—C7—C1123.0 (4)C3—C4—H4120.4
N1—C7—H7118.5C4—C5—C6120.3 (5)
C1—C7—H7118.5C4—C5—H5119.9
C2—O1—H1109.5C6—C5—H5119.9
C10—C11—C12119.8 (4)C2—C3—C4121.4 (5)
C10—C11—H11120.1C2—C3—H3119.3
C12—C11—H11120.1C4—C3—H3119.3
C11—C12—C13121.0 (4)H3B—O3—H3A111 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.84 (3)1.97 (3)2.800 (4)170 (5)
O3—H3B···O2i0.85 (3)2.07 (3)2.828 (4)149 (5)
N2—H2···O3ii0.90 (1)1.96 (1)2.856 (4)172 (5)
O1—H1···N10.821.962.667 (5)143

Symmetry codes: (i) x, y−1, z; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2647).

References

  • Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584. [PMC free article] [PubMed]
  • Ali, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729–o1730.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem.41, 1253–1261. [PubMed]
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595. [PMC free article] [PubMed]
  • He, L. (2008). Acta Cryst. E64, o82. [PMC free article] [PubMed]
  • Nie, Y. (2008). Acta Cryst. E64, o471. [PMC free article] [PubMed]
  • Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295–o1296.
  • Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem.38, 781–786. [PubMed]
  • Zou, W., Yu, H. & Meng, J. (2004). Acta Cryst. E60, o671–o673.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography