PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1675.
Published online 2008 August 6. doi:  10.1107/S1600536808024227
PMCID: PMC2960493

(E)-Methyl N′-[1-(4-hydroxy­phen­yl)ethyl­idene]hydrazinecarboxyl­ate

Abstract

The title compound, C10H12N2O3, adopts a trans configuration with respect to the C=N bond. The dihedral angle between the benzene ring and the hydrazine carboxylic acid plane is 8.29 (7)°. Mol­ecules are linked into a three-dimensional network by N—H(...)O, O—H(...)O, O—H(...)N hydrogen bonds and C—H(...)π inter­actions.

Related literature

For general background, see: Parashar et al. (1988 [triangle]); Hadjoudis et al. (1987 [triangle]); Borg et al. (1999 [triangle]). For related structures, see: Shang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1675-scheme1.jpg

Experimental

Crystal data

  • C10H12N2O3
  • M r = 208.22
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1675-efi1.jpg
  • a = 11.2532 (18) Å
  • b = 10.4310 (17) Å
  • c = 17.226 (3) Å
  • V = 2022.1 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 273 (2) K
  • 0.31 × 0.27 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.972, T max = 0.978
  • 12287 measured reflections
  • 1794 independent reflections
  • 1626 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.098
  • S = 1.09
  • 1794 reflections
  • 140 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024227/bg2200sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024227/bg2200Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Hangzhou Vocational and Technical College, China.

supplementary crystallographic information

Comment

Benzaldehydehydrazone derivatives have received considerable attentions for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties(Hadjoudis et al., 1987). Meanwhile, it is an important intermediate of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with interesting properties (Borg et al., 1999). As a further investigation of this type of derivatives, the crystal structure of the title compound, C10H12N2O3(Fig.1), is described here.

The title molecule (Fig.1) adopts a trans configuration with respect to the C═N bond. The N1/N2/O2/O3/C9/C10 plane of the hydrazine carboxylic acid methyl ester group is slightly twisted away from the attached ring, to which it subtends a dihedral angle of 8.29 (7)°. Bond lengths and angles agree with those observed for methyl N'-[(E)-4-methoxybenzylidene] hydrazinecarboxylate (Shang et al., 2007).

The molecules are linked into a three-dimensional network by N–H···O, O–H···O, O–H···N hydrogen bonds and C–H···π interactions. (Table 1).

Experimental

4-Hydroxy-acetophenone (1.36 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (25 ml) and left for 4 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 80% yield. Crystals suitable for X-ray analysis were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 483–485 K).

Refinement

H atoms were included in the riding model approximation with N—H = 0.86Å and O—H =0.82 Å. C-bound H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.
Molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Crystal data

C10H12N2O3F000 = 880
Mr = 208.22Dx = 1.368 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1794 reflections
a = 11.2532 (18) Åθ = 2.4–25.0º
b = 10.4310 (17) ŵ = 0.10 mm1
c = 17.226 (3) ÅT = 273 (2) K
V = 2022.1 (6) Å3Block, colourless
Z = 80.31 × 0.27 × 0.25 mm

Data collection

Bruker SMART CCD area-detector diffractometer1794 independent reflections
Radiation source: fine-focus sealed tube1626 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.016
T = 273(2) Kθmax = 25.1º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 2002)h = −13→10
Tmin = 0.972, Tmax = 0.978k = −12→12
12287 measured reflectionsl = −20→20

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033  w = 1/[σ2(Fo2) + (0.0493P)2 + 0.6007P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.17 e Å3
1794 reflectionsΔρmin = −0.15 e Å3
140 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (8)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.54458 (12)0.13035 (13)0.82724 (8)0.0330 (3)
H30.49760.18060.85960.040*
C70.47041 (11)−0.06505 (12)0.89717 (7)0.0287 (3)
C50.61590 (11)−0.07467 (13)0.78629 (8)0.0329 (3)
H50.6177−0.16340.79130.039*
C90.22859 (11)0.01890 (13)1.01445 (7)0.0332 (3)
C30.68423 (11)0.11609 (13)0.72183 (7)0.0294 (3)
C20.61307 (12)0.18868 (13)0.77120 (8)0.0339 (3)
H20.61180.27750.76630.041*
C60.54416 (11)−0.00311 (12)0.83650 (7)0.0283 (3)
C40.68424 (12)−0.01681 (13)0.72942 (7)0.0328 (3)
H40.7302−0.06670.69630.039*
C80.50358 (13)−0.19457 (13)0.92764 (8)0.0366 (3)
H8A0.5024−0.19320.98340.055*
H8B0.5819−0.21660.91000.055*
H8C0.4477−0.25710.90910.055*
N20.30927 (11)−0.05735 (10)0.97785 (7)0.0348 (3)
H2A0.3164−0.13720.98950.042*
N10.37946 (9)−0.00106 (10)0.92106 (6)0.0299 (3)
O10.74919 (9)0.18049 (9)0.66825 (5)0.0381 (3)
H10.78280.12910.63970.057*
O30.16440 (10)−0.05274 (10)1.06350 (6)0.0471 (3)
O20.21727 (9)0.13304 (9)1.00534 (6)0.0433 (3)
C100.07785 (16)0.01597 (17)1.10905 (10)0.0540 (5)
H10A0.11080.09651.12530.081*
H10B0.0571−0.03391.15390.081*
H10C0.00810.03101.07830.081*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0343 (7)0.0289 (7)0.0359 (7)0.0019 (6)0.0053 (6)−0.0057 (5)
C70.0261 (6)0.0289 (7)0.0309 (7)−0.0016 (5)−0.0063 (5)−0.0016 (5)
C50.0315 (7)0.0245 (7)0.0426 (8)0.0020 (5)−0.0003 (6)−0.0014 (5)
C90.0302 (7)0.0359 (8)0.0334 (7)−0.0036 (6)−0.0026 (5)−0.0005 (6)
C30.0268 (6)0.0316 (7)0.0298 (6)−0.0015 (5)−0.0012 (5)−0.0024 (5)
C20.0390 (8)0.0238 (6)0.0390 (7)0.0006 (5)0.0041 (6)−0.0025 (5)
C60.0249 (6)0.0286 (7)0.0315 (7)−0.0005 (5)−0.0036 (5)−0.0013 (5)
C40.0309 (7)0.0300 (7)0.0374 (7)0.0043 (6)0.0039 (5)−0.0051 (5)
C80.0345 (7)0.0321 (7)0.0432 (8)−0.0003 (6)0.0006 (6)0.0048 (6)
N20.0366 (7)0.0293 (6)0.0383 (6)−0.0002 (5)0.0056 (5)0.0042 (5)
N10.0290 (6)0.0319 (6)0.0289 (6)−0.0010 (5)0.0005 (4)0.0029 (4)
O10.0434 (6)0.0314 (5)0.0396 (5)0.0003 (4)0.0132 (4)−0.0021 (4)
O30.0500 (7)0.0373 (6)0.0541 (6)−0.0066 (5)0.0232 (5)−0.0039 (5)
O20.0437 (6)0.0358 (6)0.0505 (6)0.0056 (5)0.0053 (5)0.0056 (5)
C100.0557 (10)0.0507 (10)0.0558 (10)−0.0061 (8)0.0227 (8)−0.0134 (8)

Geometric parameters (Å, °)

C1—C21.3770 (19)C3—C41.3924 (19)
C1—C61.4012 (19)C2—H20.9300
C1—H30.9300C4—H40.9300
C7—N11.2894 (17)C8—H8A0.9600
C7—C61.4827 (18)C8—H8B0.9600
C7—C81.4967 (18)C8—H8C0.9600
C5—C41.3840 (19)N2—N11.3877 (15)
C5—C61.3990 (18)N2—H2A0.8600
C5—H50.9300O1—H10.8200
C9—O21.2076 (17)O3—C101.4416 (18)
C9—O31.3394 (16)C10—H10A0.9600
C9—N21.3618 (18)C10—H10B0.9600
C3—O11.3556 (16)C10—H10C0.9600
C3—C21.3920 (18)
C2—C1—C6121.38 (12)C5—C4—C3120.04 (12)
C2—C1—H3119.3C5—C4—H4120.0
C6—C1—H3119.3C3—C4—H4120.0
N1—C7—C6116.34 (11)C7—C8—H8A109.5
N1—C7—C8123.60 (12)C7—C8—H8B109.5
C6—C7—C8120.07 (11)H8A—C8—H8B109.5
C4—C5—C6121.71 (12)C7—C8—H8C109.5
C4—C5—H5119.1H8A—C8—H8C109.5
C6—C5—H5119.1H8B—C8—H8C109.5
O2—C9—O3125.11 (12)C9—N2—N1117.31 (11)
O2—C9—N2125.88 (12)C9—N2—H2A121.3
O3—C9—N2109.01 (12)N1—N2—H2A121.3
O1—C3—C2117.17 (12)C7—N1—N2117.25 (11)
O1—C3—C4123.86 (11)C3—O1—H1109.5
C2—C3—C4118.96 (12)C9—O3—C10115.49 (12)
C1—C2—C3120.66 (12)O3—C10—H10A109.5
C1—C2—H2119.7O3—C10—H10B109.5
C3—C2—H2119.7H10A—C10—H10B109.5
C5—C6—C1117.25 (12)O3—C10—H10C109.5
C5—C6—C7121.75 (12)H10A—C10—H10C109.5
C1—C6—C7121.01 (11)H10B—C10—H10C109.5
C6—C1—C2—C30.0 (2)C6—C5—C4—C31.0 (2)
O1—C3—C2—C1−179.91 (12)O1—C3—C4—C5179.43 (12)
C4—C3—C2—C10.66 (19)C2—C3—C4—C5−1.17 (19)
C4—C5—C6—C1−0.33 (18)O2—C9—N2—N1−4.8 (2)
C4—C5—C6—C7179.66 (12)O3—C9—N2—N1176.23 (11)
C2—C1—C6—C5−0.20 (19)C6—C7—N1—N2−179.99 (10)
C2—C1—C6—C7179.81 (12)C8—C7—N1—N2−0.36 (18)
N1—C7—C6—C5−156.37 (12)C9—N2—N1—C7166.88 (11)
C8—C7—C6—C523.98 (18)O2—C9—O3—C10−1.4 (2)
N1—C7—C6—C123.61 (17)N2—C9—O3—C10177.62 (12)
C8—C7—C6—C1−156.03 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.613.0523 (14)116
O1—H1···N1i0.822.032.8464 (14)174
N2—H2A···O2ii0.862.443.2777 (16)164
C10—H10B···Cg1iii0.962.903.7169 (19)144

Symmetry codes: (i) x+1/2, y, −z+3/2; (ii) −x+1/2, y−1/2, z; (iii) −x+3/2, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2200).

References

  • Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem.42, 4331–4342. [PubMed]
  • Bruker (2002). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.
  • Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.
  • Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography