PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1741–o1742.
Published online 2008 August 13. doi:  10.1107/S1600536808025269
PMCID: PMC2960492

2-(7,8-Diphenyl-1H-imidazo[4,5-f]quinoxalin-2-yl)phenol methanol disolvate

Abstract

The title compound, C27H18N4O·2CH4O, is a unsymmetrically substituted quinoxaline. An intra­molecular O—H(...)N hydrogen bond involving the hydr­oxy and imino groups generates an S(6) ring motif. Inter­molecular C—H(...)O and N—H(...)O hydrogen bonds form an R 2 1(7) ring motif involving a methanol O atom and two H atoms of the imidazole and benzene rings, respectively. The latter links neighbouring mol­ecules into one-dimensional extended chains along the a axis. The two benzene rings are inclined towards each other, as indicated by the dihedral angle of 52.13 (10)°. The phenol ring is almost coplanar with the basic quinoxaline unit, making a dihedral angle of 2.43 (6)°. The short distances between the centroids of the five- and six-membered rings prove the existence of π–π inter­actions [centroid–centroid distances = 3.5234 (9)–3.7885 (10) Å]. The crystal structure is stabilized by intra­molecular O—H(...)N, inter­molecular O—H(...)O, N—H(...)O and C—H(...)O (× 2) hydrogen bonds and weak inter­molecular C—H(...)π and π–π inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For information about imidazolyl quinoxaline, see, for example: Mamedov et al. (2004 [triangle]); Miranda et al. (2008 [triangle]); Bhosale et al. (2005 [triangle]); Kanoktanaporn et al. (1980 [triangle]); Ali et al. (2000 [triangle]); Veroni et al. (2008 [triangle]); Zarranz et al. (2004 [triangle]); Addess et al. (1993 [triangle]); Mollegaard et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1741-scheme1.jpg

Experimental

Crystal data

  • C27H18N4O·2CH4O
  • M r = 478.54
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1741-efi1.jpg
  • a = 10.5120 (3) Å
  • b = 11.4574 (2) Å
  • c = 11.9983 (2) Å
  • α = 116.325 (1)°
  • β = 107.465 (1)°
  • γ = 95.147 (1)°
  • V = 1192.81 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100.0 (1) K
  • 0.39 × 0.29 × 0.12 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.876, T max = 0.990
  • 23412 measured reflections
  • 7076 independent reflections
  • 5031 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.182
  • S = 1.07
  • 7076 reflections
  • 335 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.99 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected centroid(...)centroid distances (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025269/at2610sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025269/at2610Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia, and the University of Bath for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Quinoxaline structure is recognized in a growing number of naturally occurring compounds such as riboflavin (vitamin B2), flavoenzymes, molybdopterines and antibiotics of Streptomyces (Ali et al., 2000; Veroni et al., 2008). Quinoxaline derivatives have already been used as antibacterial, antiviral, anticancer, antifungal, antihelmintic and insecticidal agents (Zarranz et al., 2004). The widely prescribed quinoxaline antibiotics are found to bind specifically by bisintercalation to double-stranded DNA (Addess et al., 1993) and to enhance peptide nucleic acid (PNA) binding to it (Mollegaard et al., 2000), stimulating the research on the DNA-interactive ligands. In addition, some disubstituted quinoxaline derivatives have been found as potent antagonists of the quisqualate and kainate receptors on neurones of the central nervous system. To the best of our knowledge, this compound is the first quinoxaline with both phenol and imidazole substituents. In view of the importance of these organic ligands, the title compound (I) was synthesized and its crystal structure is repoted here.

The bond lenghts and angles are in normal ranges (Allen et al., 1987). An intramolecular O—H···N hydrogen bond involving the hydroxy and the N atom of the imidazole group generate S(6) ring motif (Bernstein et al. 1995). An intermolecular C—H···O and N—H···O hydrogen bonds form an R21(7) ring motif involving an oxygen of the methanol and two H atoms of the imidazole and benzene rings, respectively (Bernstein et al. 1995). The latter links neighbouring molecules into 1-D extended chains (Fig. 2) along the a axis. The two benzene rings are inclined to each other and their orientations are shown by the dihedral angle of 52.13 (10) °. The phenol ring is almost coplanar with the basic quinoxaline unit making the dihedral angle of 2.43 (6) °. The short distances between the centroids of the five and six-membered rings prove an existence of π-π interactions (Table 1) [centroid–centroid distances ranging from 3.5234 (9) to 3.7885 (10) Å]. The crystal structure is stabilized by intramolecular O—H···N, intermolecular O—H···O, N—H···O, C—H···O (x 2) hydrogen bonds, weak intermolecular C—H···π and π-π interactions.

Experimental

A mixture of (E)-2-((5-amino-2,3-diphenylquinoxalin-6-ylimino)methyl) -phenol (418 mg, 1 mmol) in 20 ml of dichloromethane was added to a 20 ml methanolic solution of CoCl2. 6H2O (238 mg, 1 mmol). The reaction mixture was stirred under heating/boiling condition for 1 h. After cooling, the brown crystalline products was filtered, washed with ethanol and ether and then dried at room temperature.

Refinement

The H-atoms attached to O1 and N4 were located from the difference Fourier map and refined freely. The H-atoms attached to O2 and O3 were located from the difference Fourier map and then costrained to ride on the parent atoms with an isotropic displacement parameter 1.5 times that of the parent atom. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93 - 0.96 Å] and refined using a riding model. A rotating-group model was applied for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular and intermolecular interactions are drawn as dashed lines.
Fig. 2.
The crystal packing of (I), viewed down the b-axis, showing an 1-D extended chain along the a-axis. Intramolecular and intermolecular interactions are drawn as dashed lines.

Crystal data

C27H18N4O1·2C1H4O1V = 1192.81 (4) Å3
Mr = 478.54Z = 2
Triclinic, P1F000 = 504
Hall symbol: -P 1Dx = 1.332 Mg m3
a = 10.5120 (3) ÅMo Kα radiation λ = 0.71073 Å
b = 11.4574 (2) ÅCell parameters from 4368 reflections
c = 11.9983 (2) ŵ = 0.09 mm1
α = 116.325 (1)ºT = 100.0 (1) K
β = 107.465 (1)ºBlock, brown
γ = 95.147 (1)º0.39 × 0.29 × 0.12 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer7076 independent reflections
Radiation source: fine-focus sealed tube5031 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.043
T = 100.0(1) Kθmax = 30.3º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −14→14
Tmin = 0.876, Tmax = 0.990k = −16→16
23412 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.182  w = 1/[σ2(Fo2) + (0.0919P)2 + 0.4066P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
7076 reflectionsΔρmax = 0.99 e Å3
335 parametersΔρmin = −0.48 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.43178 (14)−0.35511 (14)0.48044 (14)0.0269 (3)
N10.31793 (14)−0.20440 (14)0.39691 (14)0.0206 (3)
N20.29306 (14)0.09233 (14)0.22570 (14)0.0190 (3)
N30.03863 (14)0.11984 (14)0.25061 (14)0.0201 (3)
N40.42131 (14)−0.09206 (14)0.32161 (14)0.0194 (3)
C10.53792 (17)−0.32830 (17)0.44611 (16)0.0204 (3)
C20.64738 (18)−0.38570 (17)0.47042 (17)0.0230 (3)
H2A0.6462−0.43980.50960.028*
C30.75724 (18)−0.36215 (18)0.43628 (18)0.0247 (4)
H3A0.8303−0.40010.45330.030*
C40.76027 (18)−0.28222 (19)0.37661 (18)0.0243 (4)
H4A0.8341−0.26820.35250.029*
C50.65261 (17)−0.22384 (18)0.35341 (17)0.0220 (3)
H5A0.6550−0.16990.31430.026*
C60.54036 (16)−0.24495 (16)0.38802 (16)0.0191 (3)
C70.42786 (17)−0.18162 (16)0.36860 (16)0.0189 (3)
C80.23639 (17)−0.12638 (16)0.36740 (16)0.0197 (3)
C90.10836 (17)−0.11210 (17)0.37990 (18)0.0223 (3)
H9A0.0684−0.15770.41370.027*
C100.04485 (18)−0.02999 (17)0.34120 (18)0.0222 (3)
H10A−0.0393−0.01930.34900.027*
C110.10607 (16)0.03970 (16)0.28893 (16)0.0190 (3)
C120.09500 (16)0.18353 (16)0.20112 (16)0.0186 (3)
C130.22417 (16)0.16765 (16)0.18646 (16)0.0182 (3)
C140.23573 (16)0.02835 (16)0.27780 (16)0.0184 (3)
C150.29957 (17)−0.05638 (16)0.31951 (16)0.0192 (3)
C160.01785 (17)0.27117 (17)0.16282 (17)0.0204 (3)
C17−0.12304 (18)0.21913 (19)0.08189 (18)0.0256 (4)
H17A−0.16720.13120.05380.031*
C18−0.1971 (2)0.2984 (2)0.0433 (2)0.0334 (4)
H18A−0.29050.2630−0.01160.040*
C19−0.1323 (2)0.4301 (2)0.0864 (2)0.0383 (5)
H19A−0.18190.48280.06000.046*
C200.0072 (2)0.4835 (2)0.1693 (2)0.0343 (4)
H20A0.05020.57240.19960.041*
C210.0823 (2)0.40404 (18)0.20673 (19)0.0265 (4)
H21A0.17580.43960.26120.032*
C220.28550 (17)0.23115 (16)0.12362 (16)0.0192 (3)
C230.20742 (18)0.21654 (18)−0.00052 (17)0.0228 (3)
H23A0.11480.1690−0.04370.027*
C240.2674 (2)0.27272 (19)−0.05977 (18)0.0259 (4)
H24A0.21510.2613−0.14340.031*
C250.4040 (2)0.34550 (19)0.00426 (19)0.0281 (4)
H25A0.44360.3834−0.03580.034*
C260.4826 (2)0.36194 (19)0.12905 (19)0.0278 (4)
H26A0.57450.41170.17290.033*
C270.42355 (18)0.30390 (18)0.18805 (17)0.0229 (3)
H27A0.47650.31370.27070.028*
O20.62482 (16)0.01159 (16)0.26543 (16)0.0394 (4)
H1O20.70560.09330.31880.059*
C280.5765 (2)0.0070 (2)0.1395 (2)0.0398 (5)
H28A0.55780.09150.15190.060*
H28B0.4933−0.06430.08020.060*
H28C0.6455−0.00930.10120.060*
O30.86046 (15)0.20926 (15)0.38666 (16)0.0366 (3)
H1O30.92030.18580.33890.055*
C290.8398 (2)0.3352 (2)0.4050 (2)0.0352 (4)
H29A0.87290.39890.49940.053*
H29B0.74300.32600.36420.053*
H29C0.88930.36650.36380.053*
H1N40.492 (3)−0.053 (2)0.302 (2)0.038 (6)*
H1O10.370 (3)−0.303 (3)0.460 (3)0.054 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0281 (6)0.0313 (7)0.0364 (7)0.0112 (5)0.0177 (6)0.0248 (6)
N10.0209 (7)0.0221 (7)0.0245 (7)0.0066 (5)0.0106 (6)0.0146 (6)
N20.0215 (7)0.0202 (7)0.0182 (6)0.0051 (5)0.0090 (5)0.0111 (5)
N30.0213 (7)0.0201 (7)0.0202 (7)0.0055 (5)0.0087 (5)0.0105 (6)
N40.0202 (6)0.0226 (7)0.0216 (7)0.0074 (5)0.0098 (5)0.0145 (6)
C10.0228 (8)0.0198 (8)0.0193 (7)0.0028 (6)0.0083 (6)0.0105 (6)
C20.0263 (8)0.0219 (8)0.0228 (8)0.0069 (6)0.0071 (7)0.0140 (7)
C30.0231 (8)0.0260 (9)0.0254 (8)0.0082 (7)0.0069 (7)0.0141 (7)
C40.0201 (8)0.0305 (9)0.0256 (8)0.0065 (7)0.0096 (7)0.0161 (7)
C50.0215 (8)0.0260 (8)0.0223 (8)0.0059 (6)0.0089 (6)0.0147 (7)
C60.0198 (7)0.0200 (7)0.0187 (7)0.0044 (6)0.0069 (6)0.0109 (6)
C70.0207 (7)0.0193 (7)0.0180 (7)0.0040 (6)0.0077 (6)0.0104 (6)
C80.0205 (7)0.0198 (8)0.0212 (8)0.0039 (6)0.0087 (6)0.0118 (6)
C90.0226 (8)0.0239 (8)0.0263 (8)0.0053 (6)0.0130 (7)0.0151 (7)
C100.0210 (8)0.0247 (8)0.0260 (8)0.0067 (6)0.0131 (7)0.0139 (7)
C110.0198 (7)0.0194 (7)0.0183 (7)0.0052 (6)0.0079 (6)0.0092 (6)
C120.0199 (7)0.0190 (7)0.0173 (7)0.0057 (6)0.0073 (6)0.0090 (6)
C130.0197 (7)0.0182 (7)0.0166 (7)0.0040 (6)0.0067 (6)0.0087 (6)
C140.0208 (7)0.0192 (7)0.0170 (7)0.0053 (6)0.0083 (6)0.0097 (6)
C150.0201 (7)0.0208 (8)0.0192 (7)0.0058 (6)0.0088 (6)0.0108 (6)
C160.0227 (8)0.0235 (8)0.0204 (8)0.0107 (6)0.0115 (6)0.0122 (7)
C170.0251 (8)0.0276 (9)0.0245 (8)0.0086 (7)0.0089 (7)0.0132 (7)
C180.0288 (9)0.0418 (11)0.0305 (10)0.0166 (8)0.0081 (8)0.0192 (9)
C190.0429 (12)0.0403 (12)0.0442 (12)0.0252 (10)0.0182 (10)0.0275 (10)
C200.0423 (11)0.0266 (9)0.0430 (11)0.0150 (8)0.0196 (9)0.0213 (9)
C210.0288 (9)0.0237 (8)0.0298 (9)0.0095 (7)0.0129 (7)0.0140 (7)
C220.0233 (8)0.0187 (7)0.0203 (8)0.0076 (6)0.0110 (6)0.0113 (6)
C230.0238 (8)0.0249 (8)0.0225 (8)0.0078 (7)0.0094 (7)0.0133 (7)
C240.0334 (9)0.0288 (9)0.0223 (8)0.0096 (7)0.0117 (7)0.0170 (7)
C250.0378 (10)0.0259 (9)0.0283 (9)0.0061 (7)0.0169 (8)0.0172 (8)
C260.0283 (9)0.0262 (9)0.0265 (9)0.0001 (7)0.0114 (7)0.0116 (7)
C270.0248 (8)0.0252 (8)0.0201 (8)0.0053 (7)0.0091 (6)0.0121 (7)
O20.0436 (8)0.0401 (8)0.0442 (9)0.0048 (7)0.0230 (7)0.0259 (7)
C280.0470 (12)0.0376 (11)0.0423 (12)0.0138 (10)0.0216 (10)0.0224 (10)
O30.0404 (8)0.0427 (8)0.0511 (9)0.0215 (7)0.0308 (7)0.0324 (8)
C290.0345 (10)0.0341 (10)0.0416 (11)0.0129 (8)0.0216 (9)0.0172 (9)

Geometric parameters (Å, °)

O1—C11.355 (2)C16—C211.394 (2)
O1—H1O10.97 (3)C16—C171.399 (2)
N1—C71.334 (2)C17—C181.389 (3)
N1—C81.377 (2)C17—H17A0.9300
N2—C131.326 (2)C18—C191.386 (3)
N2—C141.358 (2)C18—H18A0.9300
N3—C121.324 (2)C19—C201.392 (3)
N3—C111.361 (2)C19—H19A0.9300
N4—C71.370 (2)C20—C211.390 (3)
N4—C151.374 (2)C20—H20A0.9300
N4—H1N40.97 (3)C21—H21A0.9300
C1—C21.395 (2)C22—C271.392 (2)
C1—C61.412 (2)C22—C231.393 (2)
C2—C31.379 (3)C23—C241.385 (2)
C2—H2A0.9300C23—H23A0.9300
C3—C41.394 (2)C24—C251.380 (3)
C3—H3A0.9300C24—H24A0.9300
C4—C51.385 (2)C25—C261.392 (3)
C4—H4A0.9300C25—H25A0.9300
C5—C61.398 (2)C26—C271.391 (2)
C5—H5A0.9300C26—H26A0.9300
C6—C71.455 (2)C27—H27A0.9300
C8—C151.399 (2)O2—C281.416 (3)
C8—C91.414 (2)O2—H1O21.0039
C9—C101.364 (2)C28—H28A0.9600
C9—H9A0.9300C28—H28B0.9600
C10—C111.428 (2)C28—H28C0.9600
C10—H10A0.9300O3—C291.407 (2)
C11—C141.421 (2)O3—H1O30.9522
C12—C131.438 (2)C29—H29A0.9600
C12—C161.486 (2)C29—H29B0.9600
C13—C221.486 (2)C29—H29C0.9600
C14—C151.410 (2)
Cg1···Cg1i3.7885 (10)Cg3···Cg4i3.6348 (11)
Cg2···Cg3i3.5234 (7)
C1—O1—H1O1104.8 (17)C8—C15—C14121.14 (15)
C7—N1—C8105.76 (13)C21—C16—C17119.42 (16)
C13—N2—C14117.55 (14)C21—C16—C12121.54 (15)
C12—N3—C11118.73 (14)C17—C16—C12119.04 (15)
C7—N4—C15106.63 (14)C18—C17—C16120.17 (17)
C7—N4—H1N4127.7 (14)C18—C17—H17A119.9
C15—N4—H1N4125.4 (14)C16—C17—H17A119.9
O1—C1—C2117.77 (15)C19—C18—C17120.15 (19)
O1—C1—C6122.16 (15)C19—C18—H18A119.9
C2—C1—C6120.07 (15)C17—C18—H18A119.9
C3—C2—C1119.88 (16)C18—C19—C20120.00 (18)
C3—C2—H2A120.1C18—C19—H19A120.0
C1—C2—H2A120.1C20—C19—H19A120.0
C2—C3—C4120.86 (16)C21—C20—C19120.10 (19)
C2—C3—H3A119.6C21—C20—H20A119.9
C4—C3—H3A119.6C19—C20—H20A119.9
C5—C4—C3119.55 (16)C20—C21—C16120.13 (18)
C5—C4—H4A120.2C20—C21—H21A119.9
C3—C4—H4A120.2C16—C21—H21A119.9
C4—C5—C6120.87 (16)C27—C22—C23119.41 (15)
C4—C5—H5A119.6C27—C22—C13119.70 (14)
C6—C5—H5A119.6C23—C22—C13120.88 (15)
C5—C6—C1118.74 (15)C24—C23—C22120.17 (16)
C5—C6—C7122.07 (15)C24—C23—H23A119.9
C1—C6—C7119.18 (15)C22—C23—H23A119.9
N1—C7—N4111.95 (14)C25—C24—C23120.52 (16)
N1—C7—C6122.72 (14)C25—C24—H24A119.7
N4—C7—C6125.33 (15)C23—C24—H24A119.7
N1—C8—C15109.29 (14)C24—C25—C26119.76 (16)
N1—C8—C9129.16 (15)C24—C25—H25A120.1
C15—C8—C9121.56 (15)C26—C25—H25A120.1
C10—C9—C8118.49 (15)C27—C26—C25119.98 (17)
C10—C9—H9A120.8C27—C26—H26A120.0
C8—C9—H9A120.8C25—C26—H26A120.0
C9—C10—C11120.76 (15)C26—C27—C22120.16 (16)
C9—C10—H10A119.6C26—C27—H27A119.9
C11—C10—H10A119.6C22—C27—H27A119.9
N3—C11—C14119.68 (14)C28—O2—H1O2101.2
N3—C11—C10118.80 (15)O2—C28—H28A109.5
C14—C11—C10121.51 (15)O2—C28—H28B109.5
N3—C12—C13120.96 (14)H28A—C28—H28B109.5
N3—C12—C16116.40 (14)O2—C28—H28C109.5
C13—C12—C16122.65 (14)H28A—C28—H28C109.5
N2—C13—C12121.33 (14)H28B—C28—H28C109.5
N2—C13—C22116.56 (14)C29—O3—H1O3108.4
C12—C13—C22122.09 (14)O3—C29—H29A109.5
N2—C14—C15121.75 (15)O3—C29—H29B109.5
N2—C14—C11121.71 (15)H29A—C29—H29B109.5
C15—C14—C11116.51 (14)O3—C29—H29C109.5
N4—C15—C8106.38 (14)H29A—C29—H29C109.5
N4—C15—C14132.46 (15)H29B—C29—H29C109.5
O1—C1—C2—C3179.52 (16)N3—C11—C14—N2−2.1 (2)
C6—C1—C2—C3−0.7 (3)C10—C11—C14—N2178.68 (15)
C1—C2—C3—C4−0.5 (3)N3—C11—C14—C15179.95 (14)
C2—C3—C4—C51.1 (3)C10—C11—C14—C150.7 (2)
C3—C4—C5—C6−0.5 (3)C7—N4—C15—C80.49 (17)
C4—C5—C6—C1−0.6 (3)C7—N4—C15—C14−177.94 (17)
C4—C5—C6—C7178.09 (16)N1—C8—C15—N4−0.57 (18)
O1—C1—C6—C5−179.00 (15)C9—C8—C15—N4179.39 (15)
C2—C1—C6—C51.3 (2)N1—C8—C15—C14178.09 (15)
O1—C1—C6—C72.3 (2)C9—C8—C15—C14−2.0 (3)
C2—C1—C6—C7−177.50 (15)N2—C14—C15—N41.1 (3)
C8—N1—C7—N4−0.09 (19)C11—C14—C15—N4179.09 (17)
C8—N1—C7—C6179.25 (15)N2—C14—C15—C8−177.11 (15)
C15—N4—C7—N1−0.26 (19)C11—C14—C15—C80.8 (2)
C15—N4—C7—C6−179.58 (15)N3—C12—C16—C21129.81 (17)
C5—C6—C7—N1177.68 (16)C13—C12—C16—C21−50.0 (2)
C1—C6—C7—N1−3.6 (2)N3—C12—C16—C17−49.6 (2)
C5—C6—C7—N4−3.1 (3)C13—C12—C16—C17130.63 (17)
C1—C6—C7—N4175.63 (15)C21—C16—C17—C181.4 (3)
C7—N1—C8—C150.41 (18)C12—C16—C17—C18−179.21 (17)
C7—N1—C8—C9−179.54 (17)C16—C17—C18—C19−0.9 (3)
N1—C8—C9—C10−178.63 (17)C17—C18—C19—C20−0.4 (3)
C15—C8—C9—C101.4 (3)C18—C19—C20—C211.3 (3)
C8—C9—C10—C110.2 (3)C19—C20—C21—C16−0.8 (3)
C12—N3—C11—C141.3 (2)C17—C16—C21—C20−0.6 (3)
C12—N3—C11—C10−179.45 (15)C12—C16—C21—C20−179.91 (17)
C9—C10—C11—N3179.52 (16)N2—C13—C22—C27−50.5 (2)
C9—C10—C11—C14−1.3 (3)C12—C13—C22—C27131.08 (17)
C11—N3—C12—C130.7 (2)N2—C13—C22—C23128.11 (17)
C11—N3—C12—C16−179.14 (14)C12—C13—C22—C23−50.3 (2)
C14—N2—C13—C121.3 (2)C27—C22—C23—C240.7 (3)
C14—N2—C13—C22−177.07 (14)C13—C22—C23—C24−177.91 (16)
N3—C12—C13—N2−2.1 (2)C22—C23—C24—C25−1.1 (3)
C16—C12—C13—N2177.70 (15)C23—C24—C25—C260.4 (3)
N3—C12—C13—C22176.20 (15)C24—C25—C26—C270.7 (3)
C16—C12—C13—C22−4.0 (2)C25—C26—C27—C22−1.0 (3)
C13—N2—C14—C15178.55 (15)C23—C22—C27—C260.3 (3)
C13—N2—C14—C110.7 (2)C13—C22—C27—C26178.97 (16)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1O2···O31.001.712.700 (3)167
O3—H1O3···N3ii0.951.872.814 (2)172
N4—H1N4···O20.97 (3)1.78 (3)2.750 (2)177 (2)
O1—H1O1···N10.97 (4)1.66 (4)2.570 (2)154 (3)
C2—H2A···O1iii0.932.483.356 (3)156
C5—H5A···O20.932.423.310 (3)160
C28—H28C···Cg5iv0.962.953.534 (2)120

Symmetry codes: (ii) x+1, y, z; (iii) −x+1, −y−1, −z+1; (iv) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2610).

References

  • Addess, K. J., Sinsheimer, J. S. & Feigon, J. (1993). Biochemistry, 32, 2498–2505. [PubMed]
  • Ali, M. M., Ismail, M. M. F., EI-Gabby, M. S. A., Zahran, M. A. & Ammar, T. A. (2000). Molecules, 5, 864–868.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bhosale, R. S., Sarda, S. R., Ardhapure, S. S., Jadhav, W. N., Bhusare, S. R. & Pawar, R. P. (2005). Tetrahedron Lett.46, 7183–7186.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kanoktanaporn, S., MacBride, J. A. H. & King, T. J. (1980). J. Chem. Res.406, 4901–4902.
  • Mamedov, V. A., Kalinin, A. A., Gubaidullin, A. T., Chernova, A. V., Litvinov, I. A., Levin, Ya. A. & Shagidullin, R. R. (2004). Izv. Akad. Nauk SSSR Ser. Khim. 159–164.
  • Miranda, F. da Silva, Signori, A. M., Vicente, J., de Souza, B., Priebe, J. P., Szpoganicz, B., Sanches, N. G. & Neves, A. (2008). Tetrahedron, 64, 5410–5415.
  • Mollegaard, N. E., Bailly, C., Waring, M. J. & Nielsen, P. E. (2000). Biochemistry, 39, 9502–9507. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Veroni, I., Mitsopoulou, C. A. & Lahoz, F. J. (2008). J. Organomet. Chem.693, 2451–2457.
  • Zarranz, B., Jaso, A., Aldana, I. & Monge, A. (2004). Bioorg. Med. Chem.12, 3711–3716. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography