PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1858–o1859.
Published online 2008 August 30. doi:  10.1107/S160053680802727X
PMCID: PMC2960486

S-Benzyl­thiouronium 4-anilinobenzene­sulfonate

Abstract

In the title compound, C8H11N2S+·C12H10NO3S, the NH group of the S-benzyl­thiuronium is protonated and the inter­planar angle between the phenyl ring and the CH2—S=C(NH2)2 unit is 47.44 (10)°. In the 4-anilinobenzene­sulfonate anion, the inter­planar angle between the two rings is 44.07 (8)°. In the crystal structure, anions are linked into chains along the c-axis direction by N—H(...)O hydrogen bonds, while additional N—H(...)O inter­actions link the cations to the anions in chains along the b-axis direction. These chains are further inter­connected into a two-dimensional network parallel to the bc plane by C—H(...)O inter­actions. C—H(...)π contacts are also observed.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For background to the applications of S-benzyl­thiuronium chloride and sodium diphenyl­amine-4-sulfonate, see, for example: Liao et al. (2004 [triangle]); Liu et al. (2006a [triangle],b [triangle]); Mostafa (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1858-scheme1.jpg

Experimental

Crystal data

  • C12H10NO3S+·C8H11N2S
  • M r = 415.54
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1858-efi1.jpg
  • a = 14.4918 (4) Å
  • b = 9.2024 (2) Å
  • c = 16.3944 (4) Å
  • β = 113.529 (1)°
  • V = 2004.57 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 100.0 (1) K
  • 0.24 × 0.07 × 0.03 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.879, T max = 0.992
  • 45812 measured reflections
  • 5838 independent reflections
  • 4320 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.107
  • S = 1.07
  • 5838 reflections
  • 337 parameters
  • All H-atom parameters refined
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680802727X/sj2532sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802727X/sj2532Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

S-benzylthiouronium chloride is a useful compound in pharmaceutical and biomedical science (Mostafa, 2006) and also in electrochemistry (Liao et al., 2004) whereas sodium diphenylamine-4-sulfonate is extensively used in nanomaterial studies (Liu et al., (2006a, b). Both compounds have the potential to form hydrogen bonds. As part of our investigations into solid state hydrogen bonding, the title compound (I) was synthesized and herein we report its crystal structure.

The molecular structure of the title compound consists of a C8H11N2S+ cation and a C12H10NO3S- anion (Fig. 1). An NH group of the S-benzylthiouronium unit was protonated to become a NH2 moiety. Neither the cation and the anion are planar as can be seen from the interplanar angle between the C13–C18 benzene ring and the least-squares plane through the S2/C20/N2/N3 unit being 47.44 (10)°. In the diphenylamine-4-sulfonate anion, the interplanar angle between the the two benzene rings (C1–C6 and C7–C12) is 44.07 (8)°. The C13–C18 benzene ring makes dihedral angles of 71.72 (9)° and 29.45 (9)° with the C1–C6 and C7–C12 benzene rings, respectively. The cation is linked to the anion by an N—H···O hydrogen bond (Fig. 1). The conformation of the dimethylamino group with respect to the S-benzyl substituent is reflected in the torsion angles C20–S2–C19–C18 = -177.78 (11)° and C19–S2–C20–N2 = 14.60 (17)°. Bond lengths and angles in (I) are in normal ranges (Allen et al., 1987).

In the crystal packing (Fig. 2 and Table 1), the anions are linked into chains along the c direction by N1—H1N1···O1 hydrogen bonds whereas the cations are linked with the anions into chains along the b direction by N2—H1N2···O3, N2—H2N2···O3 and N3—H2N3···O2 hydrogen bonds. These chains are further inter-connected into a two dimensional network parallel to the bc plane by C19—H19B···O2 interactions. C—H···π interactions were also observed in the crystal (Table 1); Cg1 and Cg2 are the centroids of C7–C12 and C13–C18 benzene rings, respectively.

Experimental

The title compound was synthesized by mixing solutions of the sodium salt of diphenylamine sulfonate (0.54 g) in distilled water (5 ml) with 5 drops of 1 M HCl and S-benzylthiouronium chloride (1.0 g) in distilled water (5 ml). The mixed solution immediately yields a precipitate in ice cold water. This was filtered and dried. Colorless block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature.

Refinement

All H atoms were located in a difference map and were refined isotropically. The highest residual electron density peak is located at 0.86 Å from C10 and the deepest hole is located at 0.65 Å from S1.

Figures

Fig. 1.
The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The N—H···O hydrogen bond is drawn as a dashed line.
Fig. 2.
The crystal packing of (I), viewed along the a axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C12H10NO3S+·C8H11N2SF000 = 872
Mr = 415.54Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5838 reflections
a = 14.4918 (4) Åθ = 2.5–30.0º
b = 9.2024 (2) ŵ = 0.29 mm1
c = 16.3944 (4) ÅT = 100.0 (1) K
β = 113.529 (1)ºBlock, colorless
V = 2004.57 (9) Å30.24 × 0.07 × 0.03 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5838 independent reflections
Radiation source: fine-focus sealed tube4320 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.057
Detector resolution: 8.33 pixels mm-1θmax = 30.0º
T = 100.0(1) Kθmin = 2.5º
ω scansh = −20→20
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −12→12
Tmin = 0.879, Tmax = 0.992l = −23→23
45812 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043All H-atom parameters refined
wR(F2) = 0.107  w = 1/[σ2(Fo2) + (0.0444P)2 + 0.7114P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
5838 reflectionsΔρmax = 0.50 e Å3
337 parametersΔρmin = −0.43 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.08636 (3)0.27987 (4)0.16160 (2)0.01695 (10)
S20.19068 (4)0.70226 (5)0.20872 (3)0.02907 (12)
O10.15746 (9)0.34329 (13)0.12876 (7)0.0216 (3)
O2−0.00092 (8)0.37242 (12)0.14360 (7)0.0200 (2)
O30.05615 (10)0.13272 (12)0.12701 (7)0.0274 (3)
N10.28844 (11)0.27210 (17)0.55470 (9)0.0234 (3)
N20.08033 (12)0.85826 (16)0.06346 (10)0.0231 (3)
N30.10880 (11)0.61743 (16)0.04555 (9)0.0221 (3)
C10.37263 (13)0.4172 (2)0.68520 (11)0.0237 (4)
C20.45695 (15)0.4866 (2)0.74499 (12)0.0303 (4)
C30.54646 (15)0.4825 (2)0.73360 (12)0.0319 (4)
C40.55080 (13)0.4064 (2)0.66248 (11)0.0267 (4)
C50.46709 (12)0.33550 (19)0.60270 (11)0.0215 (3)
C60.37628 (12)0.34205 (18)0.61244 (10)0.0191 (3)
C70.24732 (12)0.27071 (17)0.46289 (10)0.0176 (3)
C80.29225 (12)0.33508 (18)0.41073 (10)0.0188 (3)
C90.24368 (12)0.33377 (18)0.31869 (10)0.0186 (3)
C100.15065 (12)0.26719 (16)0.27700 (9)0.0163 (3)
C110.10566 (12)0.19952 (17)0.32809 (10)0.0183 (3)
C120.15354 (12)0.20140 (18)0.41962 (10)0.0195 (3)
C130.22213 (14)0.71334 (19)0.40844 (11)0.0235 (4)
C140.28471 (15)0.6889 (2)0.49686 (12)0.0287 (4)
C150.36132 (15)0.7846 (2)0.54192 (12)0.0325 (4)
C160.37589 (15)0.9061 (2)0.49858 (12)0.0325 (4)
C170.31450 (13)0.9297 (2)0.40940 (11)0.0248 (4)
C180.23738 (12)0.83402 (18)0.36394 (10)0.0192 (3)
C190.17094 (13)0.85965 (18)0.26715 (10)0.0199 (3)
C200.11899 (12)0.73130 (18)0.09651 (10)0.0191 (3)
H10.3074 (15)0.419 (2)0.6925 (13)0.032 (5)*
H20.4509 (15)0.539 (2)0.7926 (14)0.041 (6)*
H30.6056 (15)0.527 (2)0.7781 (13)0.035 (5)*
H40.6119 (15)0.402 (2)0.6544 (12)0.029 (5)*
H50.4718 (13)0.2865 (19)0.5562 (12)0.020 (5)*
H80.3557 (14)0.384 (2)0.4365 (12)0.023 (5)*
H90.2763 (13)0.381 (2)0.2840 (12)0.022 (5)*
H110.0404 (13)0.1511 (19)0.2983 (11)0.015 (4)*
H120.1223 (13)0.156 (2)0.4549 (12)0.023 (5)*
H130.1681 (15)0.647 (2)0.3794 (13)0.029 (5)*
H140.2756 (14)0.609 (2)0.5268 (13)0.029 (5)*
H150.4034 (17)0.771 (2)0.6006 (15)0.042 (6)*
H160.4294 (15)0.973 (2)0.5305 (13)0.038 (6)*
H170.3262 (14)1.017 (2)0.3794 (12)0.034 (5)*
H19A0.1915 (13)0.943 (2)0.2439 (12)0.024 (5)*
H19B0.1000 (14)0.863 (2)0.2565 (12)0.023 (5)*
H1N10.2478 (15)0.245 (2)0.5773 (13)0.027 (5)*
H1N20.0428 (18)0.863 (3)0.0029 (17)0.058 (7)*
H2N20.0853 (15)0.931 (2)0.0958 (13)0.032 (6)*
H1N30.1265 (15)0.539 (2)0.0688 (13)0.030 (6)*
H2N30.0790 (17)0.624 (2)−0.0146 (15)0.045 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0226 (2)0.01564 (19)0.01148 (17)0.00260 (15)0.00556 (15)0.00000 (14)
S20.0387 (3)0.0255 (2)0.01363 (19)0.0129 (2)0.00060 (18)−0.00185 (16)
O10.0260 (6)0.0249 (6)0.0173 (5)0.0073 (5)0.0123 (5)0.0050 (5)
O20.0197 (6)0.0224 (6)0.0167 (5)0.0031 (5)0.0061 (4)0.0002 (4)
O30.0423 (7)0.0159 (6)0.0162 (5)0.0007 (5)0.0034 (5)−0.0021 (5)
N10.0212 (7)0.0359 (8)0.0135 (6)−0.0095 (6)0.0075 (6)−0.0006 (6)
N20.0325 (8)0.0175 (7)0.0143 (7)0.0026 (6)0.0043 (6)−0.0017 (6)
N30.0312 (8)0.0168 (7)0.0138 (6)0.0035 (6)0.0045 (6)0.0005 (6)
C10.0231 (9)0.0303 (9)0.0184 (7)−0.0017 (7)0.0089 (7)−0.0008 (7)
C20.0356 (10)0.0353 (10)0.0193 (8)−0.0066 (9)0.0102 (8)−0.0068 (8)
C30.0282 (10)0.0414 (11)0.0207 (8)−0.0135 (9)0.0041 (7)−0.0027 (8)
C40.0186 (8)0.0371 (10)0.0223 (8)−0.0013 (8)0.0060 (7)0.0047 (7)
C50.0214 (8)0.0246 (8)0.0182 (7)0.0015 (7)0.0075 (6)0.0013 (7)
C60.0198 (8)0.0214 (8)0.0130 (7)−0.0009 (7)0.0032 (6)0.0032 (6)
C70.0191 (8)0.0191 (8)0.0139 (7)−0.0006 (6)0.0058 (6)−0.0004 (6)
C80.0190 (8)0.0198 (8)0.0160 (7)−0.0035 (7)0.0053 (6)0.0008 (6)
C90.0221 (8)0.0183 (7)0.0167 (7)−0.0016 (7)0.0091 (6)0.0011 (6)
C100.0208 (8)0.0149 (7)0.0128 (6)0.0026 (6)0.0062 (6)0.0008 (6)
C110.0186 (8)0.0188 (8)0.0162 (7)−0.0019 (6)0.0056 (6)−0.0004 (6)
C120.0209 (8)0.0234 (8)0.0149 (7)−0.0014 (7)0.0078 (6)0.0031 (6)
C130.0295 (9)0.0212 (8)0.0198 (8)0.0024 (7)0.0099 (7)−0.0006 (7)
C140.0390 (11)0.0283 (9)0.0202 (8)0.0112 (8)0.0134 (8)0.0051 (7)
C150.0343 (10)0.0405 (11)0.0160 (8)0.0115 (9)0.0029 (8)−0.0023 (8)
C160.0279 (10)0.0387 (11)0.0238 (9)0.0001 (9)0.0028 (8)−0.0087 (8)
C170.0252 (9)0.0253 (9)0.0220 (8)−0.0001 (7)0.0073 (7)−0.0030 (7)
C180.0209 (8)0.0195 (8)0.0162 (7)0.0054 (7)0.0064 (6)−0.0009 (6)
C190.0233 (9)0.0189 (8)0.0161 (7)0.0021 (7)0.0064 (6)−0.0003 (6)
C200.0200 (8)0.0204 (8)0.0150 (7)0.0006 (7)0.0051 (6)−0.0001 (6)

Geometric parameters (Å, °)

S1—O21.4541 (12)C5—H50.912 (18)
S1—O11.4612 (11)C7—C81.397 (2)
S1—O31.4658 (12)C7—C121.410 (2)
S1—C101.7474 (15)C8—C91.387 (2)
S2—C201.7347 (16)C8—H80.957 (19)
S2—C191.8208 (17)C9—C101.387 (2)
N1—C71.3800 (19)C9—H90.974 (18)
N1—C61.403 (2)C10—C111.397 (2)
N1—H1N10.85 (2)C11—C121.379 (2)
N2—C201.315 (2)C11—H110.982 (17)
N2—H1N20.92 (3)C12—H120.961 (18)
N2—H2N20.84 (2)C13—C141.387 (2)
N3—C201.311 (2)C13—C181.394 (2)
N3—H1N30.81 (2)C13—H130.96 (2)
N3—H2N30.91 (2)C14—C151.378 (3)
C1—C21.380 (2)C14—H140.92 (2)
C1—C61.398 (2)C15—C161.386 (3)
C1—H11.00 (2)C15—H150.92 (2)
C2—C31.383 (3)C16—C171.392 (2)
C2—H20.95 (2)C16—H160.96 (2)
C3—C41.383 (3)C17—C181.384 (2)
C3—H30.97 (2)C17—H170.99 (2)
C4—C51.382 (2)C18—C191.510 (2)
C4—H40.947 (19)C19—H19A0.955 (19)
C5—C61.389 (2)C19—H19B0.973 (18)
O2—S1—O1112.06 (7)C10—C9—C8120.73 (14)
O2—S1—O3111.18 (7)C10—C9—H9120.8 (11)
O1—S1—O3111.84 (7)C8—C9—H9118.5 (11)
O2—S1—C10107.66 (7)C9—C10—C11119.74 (14)
O1—S1—C10106.02 (7)C9—C10—S1119.82 (11)
O3—S1—C10107.76 (7)C11—C10—S1120.28 (12)
C20—S2—C19106.38 (8)C12—C11—C10119.63 (15)
C7—N1—C6128.35 (14)C12—C11—H11120.9 (10)
C7—N1—H1N1113.6 (13)C10—C11—H11119.5 (10)
C6—N1—H1N1116.2 (13)C11—C12—C7121.22 (14)
C20—N2—H1N2117.4 (16)C11—C12—H12119.7 (11)
C20—N2—H2N2122.1 (14)C7—C12—H12119.1 (11)
H1N2—N2—H2N2120 (2)C14—C13—C18120.14 (17)
C20—N3—H1N3118.7 (14)C14—C13—H13118.8 (12)
C20—N3—H2N3121.6 (14)C18—C13—H13121.1 (12)
H1N3—N3—H2N3120 (2)C15—C14—C13120.46 (18)
C2—C1—C6120.70 (16)C15—C14—H14118.7 (12)
C2—C1—H1121.4 (11)C13—C14—H14120.9 (13)
C6—C1—H1117.9 (11)C14—C15—C16119.74 (17)
C1—C2—C3120.23 (17)C14—C15—H15121.8 (14)
C1—C2—H2118.2 (13)C16—C15—H15118.4 (14)
C3—C2—H2121.6 (13)C15—C16—C17120.03 (18)
C4—C3—C2119.27 (17)C15—C16—H16119.3 (12)
C4—C3—H3121.7 (12)C17—C16—H16120.7 (12)
C2—C3—H3118.9 (11)C18—C17—C16120.40 (17)
C5—C4—C3120.97 (17)C18—C17—H17120.7 (11)
C5—C4—H4119.0 (12)C16—C17—H17118.9 (11)
C3—C4—H4120.0 (12)C17—C18—C13119.20 (15)
C4—C5—C6120.13 (16)C17—C18—C19120.36 (15)
C4—C5—H5119.3 (12)C13—C18—C19120.44 (15)
C6—C5—H5120.6 (12)C18—C19—S2105.09 (11)
C5—C6—C1118.68 (15)C18—C19—H19A112.0 (11)
C5—C6—N1123.27 (15)S2—C19—H19A106.8 (11)
C1—C6—N1118.01 (15)C18—C19—H19B112.3 (11)
N1—C7—C8124.05 (15)S2—C19—H19B108.1 (11)
N1—C7—C12117.57 (14)H19A—C19—H19B112.0 (15)
C8—C7—C12118.37 (14)N3—C20—N2121.75 (15)
C9—C8—C7120.28 (15)N3—C20—S2114.84 (12)
C9—C8—H8117.7 (11)N2—C20—S2123.36 (12)
C7—C8—H8121.9 (11)
C6—C1—C2—C30.0 (3)O1—S1—C10—C11−174.82 (12)
C1—C2—C3—C4−0.9 (3)O3—S1—C10—C11−54.93 (15)
C2—C3—C4—C50.3 (3)C9—C10—C11—C120.9 (2)
C3—C4—C5—C61.2 (3)S1—C10—C11—C12−174.38 (12)
C4—C5—C6—C1−2.1 (3)C10—C11—C12—C70.1 (2)
C4—C5—C6—N1−179.60 (16)N1—C7—C12—C11177.74 (15)
C2—C1—C6—C51.6 (3)C8—C7—C12—C11−1.5 (2)
C2—C1—C6—N1179.16 (16)C18—C13—C14—C151.1 (3)
C7—N1—C6—C5−46.7 (3)C13—C14—C15—C160.0 (3)
C7—N1—C6—C1135.84 (18)C14—C15—C16—C17−1.2 (3)
C6—N1—C7—C84.1 (3)C15—C16—C17—C181.3 (3)
C6—N1—C7—C12−175.08 (16)C16—C17—C18—C13−0.2 (3)
N1—C7—C8—C9−177.33 (16)C16—C17—C18—C19−179.89 (16)
C12—C7—C8—C91.8 (2)C14—C13—C18—C17−1.0 (2)
C7—C8—C9—C10−0.8 (2)C14—C13—C18—C19178.70 (15)
C8—C9—C10—C11−0.6 (2)C17—C18—C19—S2118.32 (15)
C8—C9—C10—S1174.76 (12)C13—C18—C19—S2−61.34 (17)
O2—S1—C10—C9−110.24 (13)C20—S2—C19—C18−177.78 (11)
O1—S1—C10—C99.86 (15)C19—S2—C20—N3−167.79 (13)
O3—S1—C10—C9129.75 (13)C19—S2—C20—N214.60 (17)
O2—S1—C10—C1165.08 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.85 (2)1.99 (2)2.836 (2)173.0 (18)
N2—H1N2···O3ii0.92 (3)2.04 (3)2.9561 (19)172 (3)
N3—H1N3···O10.809 (19)2.015 (19)2.8204 (19)174 (2)
N2—H2N2···O3iii0.839 (19)2.015 (19)2.8069 (19)157.2 (19)
N3—H2N3···O2ii0.91 (2)1.96 (2)2.8633 (17)173 (2)
C9—H9···O10.97 (2)2.463 (18)2.8563 (18)103.8 (13)
C19—H19B···O2iv0.97 (2)2.57 (2)3.332 (2)134.8 (14)
C4—H4···Cg2v0.947 (19)3.22 (2)3.943 (2)134.7 (14)
C17—H17···Cg1iii0.99 (2)2.92 (2)3.471 (2)116.0 (15)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, −y+1, −z; (iii) x, y+1, z; (iv) −x, y+1/2, −z+1/2; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2532).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liao, L.-B., Liu, W.-H. & Xiao, X.-M. (2004). J. Electroanal. Chem.566, 341–350.
  • Liu, Q., Liu, H., Zhou, Q., Liang, Y., Yin, G. & Xu, Z. (2006a). J. Mater. Sci.41, 3657–3662.
  • Liu, Q., Liu, H., Zhu, J., Liang, Y., Xu, Z., Yin, G. & Han, M. (2006b). J. Nanosci.6, 231–234. [PubMed]
  • Mostafa, G. A. E. (2006). J. Pharm. Biomed. Anal.41, 1110–1115. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography