PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1124–m1125.
Published online 2008 August 6. doi:  10.1107/S1600536808024550
PMCID: PMC2960478

The cocrystal μ-oxalato-κ4 O 1,O 2:O 1′,O 2′-bis­(aqua­(nitrato-κO){[1-(2-pyridyl-κN)eth­ylidene]hydrazine-κN}copper(II)) μ-oxalato-κ4 O 1,O 2:O 1′,O 2′-bis­((methanol-κO)(nitrato-κO){[1-(2-pyridyl-κN)eth­ylidene]hydrazine-κN}copper(II)) (1/1)

Abstract

The title cocrystal, [Cu2(C2O4)(NO3)2(C7H9N3)2(H2O)2][Cu2(C2O4)(NO3)2(C7H9N3)2(CH4O)2], is a 1:1 cocrystal of two centrosymmetric CuII complexes with oxalate dianions and Schiff base ligands. In each mol­ecule, the CuII centre is in a distorted octa­hedral cis-CuN2O4 environment, the donor atoms of the N,N′-bidentate Schiff base ligand and the bridging O,O′-bidentate oxalate group lying in the equatorial plane. In one mol­ecule, a monodentate nitrate anion and a water mol­ecule occupy the axial sites, and in the other, a monodentate nitrate anion and a methanol mol­ecule occupy these sites. In the crystal structure, inter­molecular N—H(...)O, O—H(...)O and N—H(...)N hydrogen bonds link the mol­ecules into a network. Weak intra­molecular N—H(...)O inter­actions are also observed.

Related literature

For related structures: see Kelly et al. (2005 [triangle]); Bulut et al. (2005 [triangle]); Moreno et al. (2007 [triangle]); Du et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1124-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C2O4)(NO3)2(C7H9N3)2(H2O)2][Cu2(C2O4)(NO3)2(C7H9N3)2(CH4O)2]
  • M r = 1319.04
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1124-efi1.jpg
  • a = 9.8358 (9) Å
  • b = 12.3773 (10) Å
  • c = 12.7136 (10) Å
  • α = 103.704 (4)°
  • β = 112.573 (4)°
  • γ = 107.821 (4)°
  • V = 1245.15 (18) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.79 mm−1
  • T = 173 (2) K
  • 0.03 × 0.02 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 11826 measured reflections
  • 4872 independent reflections
  • 3644 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.112
  • S = 1.06
  • 4872 reflections
  • 380 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.92 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO (Nonius, 1998 [triangle]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024550/hb2759sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024550/hb2759Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No.6314PS804).

supplementary crystallographic information

Comment

The molecular structure of the title compound, (I), (Fig. 1) contains two centrosymmetric binuclear CuII complexes (A and B) with the same Schiff base ligand. The coordination spheres around CuII in both A and B are slightly distorted octahedra (Table 1), with the coordination plane of each CuII formed by the N2O2donor atoms of the Schiff base N2 and the oxalate O2. The axial positions in A are occupied by an O—NO2 ion and a water molecule whereas in B these positions are occupied by a O-NO2 ion and a CH3OH molecule. The in-plane Cu—O distances are in the range 1.966 (3)–2.000 (3) Å with Cu—N distances 1.955 (4)–1.994 (4) Å, which are slightly larger than distances observed in other CuII coordination complexes of the same Schiff base ligand (Kelly et al <i\>., 2005). The elongation of the Cu—O—NO2 and Cu—O(water) or Cu—O(methanol) axial bonds [2.610 (4) and 2.251 (4) Å in A and 2.541 (4) and 2.338 (3) Å in B] clearly indicate the usual Jahn Teller distortion of the CuII as has been found previously (Bulut et al <i\>., 2005; Moreno et al <i\>., 2007; Du et al <i\>., 2007). The basal bond angles O–Cu–O and N–Cu–N are less then 90° [N1–Cu1–N2 = 80.63 (18) ° and N5–Cu2–N6 = 81.50 (17) °; O1–Cu1–O2 = 84.01 (13) ° and O7–Cu2–O8 = 85.09 (17) °] whereas the O–Cu–N angles are largely superior to 90° [N1–Cu1–O2 = 98.76 (16) ° and N2–Cu1–O1 =95.46 (16) ° in A; N5–Cu2–O8 = 95.29 (15) ° and N6–Cu2–O7 =97.93 (15) ° in B]. The axial bonds angles O(water)–Cu1–O—NO2 and O(methanol)–Cu2–O—NO2 are also less than the ideal value of 180° [168.34 (14) ° in A and 173.96 (12) ° in B]. A network of hydrogren bonds (Table 2) completes the structure.

Experimental

To a mixture of 0.324 g (1.0 mmol) of the ligand and 50 ml of methanol was added dropwise a solution of 0.463 g (2.0 mmol) of copper nitrate dihydrate in 10 ml of methanol. The resulting mixture was stirred under reflux for 120 min. After cooling the solution was left for slow evaporation and the title compound was obtained in good yield (0.620 g; 94.00°). IR (cm-1,KBr): 1655, 1625, 1603, 1585, 1484, 1375, 1327, 1030, 829, 783, 699. Analysis calculated for C34H48N16O24Cu4: C 30.96, H 3.67, N 16.99 °; found: C 30.94, H 3.69, N 16.95 °. Gren prisms of (I) were obtained from slow evaporation of a dimethylformamide solution.

Refinement

All water H atoms and amine H atoms of the bidentate Schiff base ligand were located from the difference fourier map and refined. The water O—H and amine N—H distances were restrained to be 0.96 Å, with s.u's of 0.02 Å. Others H atoms were placed geometrically and refined with a riding model. Uiso(H) for H was assigned as 1.2 Ueq of the attached C or N atoms (1.5 for methyl C atoms).

Figures

Fig. 1.
The molecular structure of (I) (H atoms are omitted for clarity). Displacement ellipsoids are plotted at the 50% probability level. Symmetry codes: (i) -x, -y-1, -z-1; (ii) 2-x, -y, -z.
Fig. 2.
Part of the packing in (I) showing hydrogen bonds as broken lines.

Crystal data

[Cu2(C2O4)(NO3)2(C7H9N3)2(H2O)2] [Cu2(C2O4)(NO3)2(C7H9N3)2(CH4O)2]Z = 1
Mr = 1319.04F000 = 672
Triclinic, P1Dx = 1.759 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.8358 (9) ÅCell parameters from 3872 reflections
b = 12.3773 (10) Åθ = 1.0–26.0º
c = 12.7136 (10) ŵ = 1.79 mm1
α = 103.704 (4)ºT = 173 (2) K
β = 112.573 (4)ºPrism, green
γ = 107.821 (4)º0.03 × 0.02 × 0.02 mm
V = 1245.15 (18) Å3

Data collection

Nonius KappaCCD diffractometer3644 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Monochromator: graphiteθmax = 26.0º
T = 173(2) Kθmin = 1.9º
π [IS PI CORRECT?] scansh = −12→11
Absorption correction: nonek = −14→15
11826 measured reflectionsl = −15→15
4872 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112  w = 1/[σ2(Fo2) + (0.0157P)2 + 3.8674P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.009
4872 reflectionsΔρmax = 0.92 e Å3
380 parametersΔρmin = −0.54 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.16109 (7)−0.43205 (5)−0.26049 (5)0.02519 (16)
Cu20.80107 (7)−0.09303 (5)−0.23584 (5)0.02536 (16)
O10.1705 (4)−0.3628 (3)−0.3847 (3)0.0256 (7)
O2−0.0358 (4)−0.5775 (3)−0.4088 (3)0.0256 (7)
O30.0280 (5)−0.3375 (4)−0.1957 (4)0.0411 (9)
O40.3402 (5)−0.5415 (4)−0.2903 (3)0.0421 (9)
O50.2179 (6)−0.7368 (4)−0.4051 (4)0.0650 (13)
O60.2292 (5)−0.6055 (3)−0.4905 (3)0.0406 (9)
O70.8412 (4)−0.1491 (3)−0.0993 (3)0.0260 (7)
O80.9916 (4)0.0660 (3)−0.1073 (3)0.0264 (7)
O90.9512 (4)−0.1775 (3)−0.3019 (3)0.0342 (8)
H240.8965−0.2413−0.36860.08 (3)*
O100.6195 (5)−0.0053 (4)−0.1877 (3)0.0470 (10)
O110.7199 (6)0.1888 (4)−0.0798 (5)0.0727 (15)
O120.7466 (6)0.0644 (4)0.0110 (4)0.0639 (13)
N10.1741 (5)−0.4997 (4)−0.1337 (4)0.0303 (10)
N20.3849 (5)−0.3083 (4)−0.1229 (4)0.0306 (10)
N30.4829 (6)−0.2153 (5)−0.1376 (5)0.0483 (13)
N40.2618 (5)−0.6290 (4)−0.3950 (4)0.0343 (10)
N50.7526 (5)−0.0355 (4)−0.3705 (4)0.0287 (9)
N60.5987 (5)−0.2449 (4)−0.3691 (3)0.0277 (9)
N70.5443 (6)−0.3515 (4)−0.3500 (4)0.0345 (10)
N80.6948 (6)0.0835 (5)−0.0856 (4)0.0415 (12)
C10.0535 (8)−0.5935 (5)−0.1446 (5)0.0396 (13)
H1−0.0475−0.6368−0.22080.048*
C20.0702 (9)−0.6314 (5)−0.0462 (6)0.0503 (16)
H2−0.0178−0.6988−0.05450.060*
C30.2192 (8)−0.5670 (5)0.0630 (5)0.0472 (15)
H30.2353−0.59100.13080.057*
C40.3432 (8)−0.4695 (6)0.0739 (5)0.0468 (15)
H40.4456−0.42560.14900.056*
C50.3192 (7)−0.4341 (5)−0.0259 (4)0.0316 (12)
C60.4383 (6)−0.3281 (5)−0.0245 (5)0.0362 (13)
C70.6073 (7)−0.2464 (6)0.0880 (5)0.0503 (16)
H7A0.6882−0.22260.06060.076*
H7B0.6354−0.29210.13980.076*
H7C0.6076−0.17180.13660.076*
C80.0597 (6)−0.4386 (4)−0.4928 (4)0.0221 (10)
C90.8353 (7)0.0747 (5)−0.3624 (5)0.0346 (12)
H90.92930.1336−0.28510.042*
C100.7900 (7)0.1081 (5)−0.4626 (5)0.0425 (14)
H100.85120.1884−0.45480.051*
C110.6536 (7)0.0212 (6)−0.5740 (5)0.0414 (14)
H110.62010.0418−0.64420.050*
C120.5649 (7)−0.0957 (5)−0.5847 (5)0.0374 (13)
H120.4699−0.1549−0.66130.045*
C130.6171 (6)−0.1254 (5)−0.4813 (4)0.0292 (11)
C140.5375 (6)−0.2435 (5)−0.4771 (4)0.0288 (11)
C150.3982 (6)−0.3556 (5)−0.5918 (5)0.0392 (13)
H15A0.4234−0.4267−0.59710.059*
H15B0.3837−0.3385−0.66590.059*
H15C0.2969−0.3744−0.58710.059*
C160.9575 (5)−0.0615 (4)0.0021 (4)0.0217 (10)
C171.0924 (8)−0.0986 (6)−0.2984 (6)0.0484 (15)
H17A1.0615−0.0565−0.35350.073*
H17B1.1430−0.1476−0.32630.073*
H17C1.1708−0.0368−0.21310.073*
H180.107 (6)−0.277 (4)−0.112 (3)0.058 (19)*
H19−0.001 (7)−0.277 (4)−0.220 (5)0.050 (17)*
H200.418 (8)−0.186 (6)−0.190 (5)0.09 (3)*
H210.570 (7)−0.154 (6)−0.055 (4)0.12 (3)*
H220.437 (4)−0.406 (4)−0.420 (4)0.055 (18)*
H230.559 (8)−0.332 (6)−0.268 (3)0.07 (2)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0265 (3)0.0263 (3)0.0162 (3)0.0107 (3)0.0062 (3)0.0068 (3)
Cu20.0265 (3)0.0248 (3)0.0155 (3)0.0102 (3)0.0045 (3)0.0052 (2)
O10.0230 (18)0.0232 (17)0.0179 (17)0.0062 (15)0.0039 (15)0.0045 (14)
O20.0258 (18)0.0257 (18)0.0199 (17)0.0103 (15)0.0074 (15)0.0088 (14)
O30.056 (3)0.041 (2)0.042 (2)0.033 (2)0.028 (2)0.020 (2)
O40.042 (2)0.048 (2)0.024 (2)0.024 (2)0.0072 (18)0.0050 (18)
O50.096 (4)0.041 (3)0.067 (3)0.034 (3)0.045 (3)0.023 (2)
O60.042 (2)0.043 (2)0.027 (2)0.0173 (19)0.0132 (18)0.0070 (17)
O70.0223 (18)0.0228 (17)0.0191 (17)0.0053 (15)0.0038 (15)0.0042 (14)
O80.0283 (19)0.0267 (18)0.0164 (16)0.0106 (16)0.0054 (15)0.0082 (14)
O90.035 (2)0.038 (2)0.026 (2)0.0173 (18)0.0145 (17)0.0090 (18)
O100.041 (2)0.052 (3)0.029 (2)0.021 (2)0.0076 (19)0.0044 (19)
O110.095 (4)0.042 (3)0.098 (4)0.040 (3)0.057 (4)0.025 (3)
O120.071 (3)0.078 (3)0.027 (2)0.039 (3)0.012 (2)0.010 (2)
N10.031 (2)0.035 (2)0.025 (2)0.017 (2)0.013 (2)0.0117 (19)
N20.027 (2)0.034 (2)0.023 (2)0.012 (2)0.011 (2)0.0039 (19)
N30.034 (3)0.044 (3)0.042 (3)−0.001 (3)0.015 (3)0.010 (3)
N40.034 (3)0.034 (3)0.040 (3)0.022 (2)0.018 (2)0.013 (2)
N50.034 (2)0.032 (2)0.022 (2)0.019 (2)0.012 (2)0.0122 (19)
N60.025 (2)0.031 (2)0.020 (2)0.013 (2)0.0076 (19)0.0025 (18)
N70.033 (3)0.027 (2)0.032 (3)0.006 (2)0.014 (2)0.008 (2)
N80.038 (3)0.045 (3)0.040 (3)0.026 (2)0.017 (2)0.007 (2)
C10.052 (4)0.041 (3)0.035 (3)0.028 (3)0.023 (3)0.017 (3)
C20.069 (5)0.035 (3)0.052 (4)0.019 (3)0.033 (4)0.026 (3)
C30.067 (4)0.040 (3)0.036 (3)0.023 (3)0.022 (3)0.025 (3)
C40.051 (4)0.057 (4)0.029 (3)0.032 (3)0.011 (3)0.016 (3)
C50.038 (3)0.043 (3)0.018 (2)0.029 (3)0.011 (2)0.009 (2)
C60.028 (3)0.043 (3)0.023 (3)0.017 (3)0.008 (2)−0.002 (2)
C70.034 (3)0.066 (4)0.035 (3)0.015 (3)0.011 (3)0.014 (3)
C80.019 (2)0.024 (2)0.017 (2)0.010 (2)0.006 (2)0.005 (2)
C90.042 (3)0.043 (3)0.025 (3)0.025 (3)0.015 (3)0.018 (2)
C100.047 (4)0.043 (3)0.046 (3)0.021 (3)0.025 (3)0.028 (3)
C110.043 (3)0.064 (4)0.034 (3)0.031 (3)0.021 (3)0.032 (3)
C120.034 (3)0.053 (4)0.026 (3)0.022 (3)0.013 (3)0.018 (3)
C130.024 (3)0.044 (3)0.019 (2)0.021 (2)0.007 (2)0.010 (2)
C140.023 (3)0.032 (3)0.022 (3)0.012 (2)0.007 (2)0.002 (2)
C150.030 (3)0.046 (3)0.023 (3)0.012 (3)0.007 (2)0.003 (2)
C160.020 (2)0.021 (2)0.021 (2)0.010 (2)0.007 (2)0.005 (2)
C170.051 (4)0.046 (4)0.052 (4)0.017 (3)0.031 (3)0.021 (3)

Geometric parameters (Å, °)

Cu1—N11.966 (4)N7—H220.96 (2)
Cu1—O11.986 (3)N7—H230.95 (2)
Cu1—N21.991 (4)C1—C21.406 (8)
Cu1—O22.000 (3)C1—H10.9500
Cu1—O32.252 (4)C2—C31.382 (9)
Cu1—O42.610 (4)C2—H20.9500
Cu2—N51.955 (4)C3—C41.362 (8)
Cu2—O71.966 (3)C3—H30.9500
Cu2—O81.981 (3)C4—C51.397 (7)
Cu2—N61.994 (4)C4—H40.9500
Cu2—O92.337 (3)C5—C61.458 (8)
Cu2—O102.541 (4)C6—C71.514 (7)
O1—C81.254 (5)C7—H7A0.9800
O2—C8i1.258 (5)C7—H7B0.9800
O3—H180.96 (2)C7—H7C0.9800
O3—H190.95 (2)C8—O2i1.258 (5)
O4—N41.248 (5)C8—C8i1.527 (9)
O5—N41.227 (6)C9—C101.386 (7)
O6—N41.260 (5)C9—H90.9500
O7—C161.262 (5)C10—C111.378 (8)
O8—C16ii1.258 (5)C10—H100.9500
O9—C171.409 (6)C11—C121.384 (8)
O9—H240.8400C11—H110.9500
O10—N81.237 (5)C12—C131.398 (7)
O11—N81.228 (6)C12—H120.9500
O12—N81.247 (6)C13—C141.457 (7)
N1—C11.315 (7)C14—C151.508 (7)
N1—C51.356 (6)C15—H15A0.9800
N2—C61.273 (7)C15—H15B0.9800
N2—N31.360 (6)C15—H15C0.9800
N3—H200.95 (2)C16—O8ii1.258 (5)
N3—H210.97 (2)C16—C16ii1.520 (9)
N5—C91.313 (7)C17—H17A0.9800
N5—C131.381 (6)C17—H17B0.9800
N6—C141.277 (6)C17—H17C0.9800
N6—N71.381 (6)
N1—Cu1—O1174.12 (15)O11—N8—O10120.4 (5)
N1—Cu1—N280.65 (18)O11—N8—O12120.7 (5)
O1—Cu1—N295.44 (16)O10—N8—O12118.9 (5)
N1—Cu1—O298.76 (16)N1—C1—C2121.7 (6)
O1—Cu1—O284.01 (13)N1—C1—H1119.2
N2—Cu1—O2166.68 (14)C2—C1—H1119.2
N1—Cu1—O386.33 (15)C3—C2—C1117.6 (6)
O1—Cu1—O398.48 (13)C3—C2—H2121.2
N2—Cu1—O395.43 (16)C1—C2—H2121.2
O2—Cu1—O397.82 (14)C4—C3—C2120.4 (5)
N1—Cu1—O483.01 (14)C4—C3—H3119.8
O1—Cu1—O491.90 (12)C2—C3—H3119.8
N2—Cu1—O478.20 (14)C3—C4—C5119.7 (6)
O2—Cu1—O488.50 (12)C3—C4—H4120.1
O3—Cu1—O4168.33 (13)C5—C4—H4120.1
N5—Cu2—O7177.14 (15)N1—C5—C4119.5 (5)
N5—Cu2—O895.30 (15)N1—C5—C6115.2 (4)
O7—Cu2—O885.09 (13)C4—C5—C6125.3 (5)
N5—Cu2—N681.51 (17)N2—C6—C5114.2 (4)
O7—Cu2—N697.92 (15)N2—C6—C7123.9 (5)
O8—Cu2—N6175.14 (15)C5—C6—C7121.8 (5)
N5—Cu2—O989.35 (14)C6—C7—H7A109.5
O7—Cu2—O993.43 (13)C6—C7—H7B109.5
O8—Cu2—O995.95 (13)H7A—C7—H7B109.5
N6—Cu2—O987.70 (14)C6—C7—H7C109.5
N5—Cu2—O1085.40 (14)H7A—C7—H7C109.5
O7—Cu2—O1091.78 (13)H7B—C7—H7C109.5
O8—Cu2—O1087.50 (13)O1—C8—O2i126.0 (4)
N6—Cu2—O1088.58 (14)O1—C8—C8i117.4 (5)
O9—Cu2—O10173.97 (12)O2i—C8—C8i116.6 (5)
C8—O1—Cu1111.0 (3)N5—C9—C10122.3 (5)
C8i—O2—Cu1110.9 (3)N5—C9—H9118.9
Cu1—O3—H18106 (4)C10—C9—H9118.9
Cu1—O3—H19126 (3)C11—C10—C9118.0 (5)
H18—O3—H1992 (5)C11—C10—H10121.0
N4—O4—Cu1110.5 (3)C9—C10—H10121.0
C16—O7—Cu2110.2 (3)C10—C11—C12120.7 (5)
C16ii—O8—Cu2110.3 (3)C10—C11—H11119.7
C17—O9—Cu2119.5 (3)C12—C11—H11119.7
C17—O9—H24109.5C11—C12—C13119.1 (5)
Cu2—O9—H24116.3C11—C12—H12120.4
N8—O10—Cu2113.3 (3)C13—C12—H12120.4
C1—N1—C5121.1 (5)N5—C13—C12118.7 (5)
C1—N1—Cu1125.4 (4)N5—C13—C14115.4 (4)
C5—N1—Cu1113.4 (3)C12—C13—C14125.9 (5)
C6—N2—N3121.3 (5)N6—C14—C13114.4 (4)
C6—N2—Cu1116.4 (4)N6—C14—C15123.1 (5)
N3—N2—Cu1122.0 (3)C13—C14—C15122.5 (4)
N2—N3—H20110 (5)C14—C15—H15A109.5
N2—N3—H21108 (5)C14—C15—H15B109.5
H20—N3—H21116 (7)H15A—C15—H15B109.5
O5—N4—O4120.6 (5)C14—C15—H15C109.5
O5—N4—O6120.2 (5)H15A—C15—H15C109.5
O4—N4—O6119.2 (4)H15B—C15—H15C109.5
C9—N5—C13121.2 (4)O8ii—C16—O7125.8 (4)
C9—N5—Cu2126.3 (3)O8ii—C16—C16ii116.7 (5)
C13—N5—Cu2112.6 (3)O7—C16—C16ii117.6 (5)
C14—N6—N7121.9 (4)O9—C17—H17A109.5
C14—N6—Cu2115.9 (4)O9—C17—H17B109.5
N7—N6—Cu2121.5 (3)H17A—C17—H17B109.5
N6—N7—H22106 (4)O9—C17—H17C109.5
N6—N7—H23111 (4)H17A—C17—H17C109.5
H22—N7—H23119 (5)H17B—C17—H17C109.5

Symmetry codes: (i) −x, −y−1, −z−1; (ii) −x+2, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H18···O11iii0.96 (2)2.11 (3)3.048 (7)164 (5)
O3—H18···O12iii0.96 (2)2.30 (4)3.084 (6)138 (5)
O3—H18···N8iii0.96 (2)2.53 (2)3.471 (6)167 (5)
O3—H19···O9iv0.95 (2)1.85 (2)2.777 (5)165 (5)
N3—H20···O10.95 (2)2.53 (7)3.014 (6)112 (5)
N3—H21···O120.97 (2)2.44 (7)3.150 (7)130 (7)
N7—H22···O60.96 (2)2.35 (4)3.131 (6)138 (5)
N7—H23···N30.95 (2)2.43 (5)3.196 (7)138 (5)
N7—H23···O70.95 (2)2.59 (6)3.091 (5)113 (5)
O9—H24···O6v0.841.892.731 (5)174
O9—H24···N4v0.842.573.367 (6)158
O9—H24···O5v0.842.563.171 (6)130

Symmetry codes: (iii) −x+1, −y, −z; (iv) x−1, y, z; (v) −x+1, −y−1, −z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2759).

References

  • Bulut, A., İçbudak, H., Sezer, G. & Kazak, C. (2005). Acta Cryst. C61, m228–m230. [PubMed]
  • Du, M., Zou, R.-Q., Zhong, R.-Q. & Xu, Q. (2007). Inorg. Chim. Acta, 360, 3442–3447.
  • Kelly, T. L., Milway, V. A., Grove, H., Niel, V., Abedin, T. S. M., Thompson, L. K., Zhao, L., Harvey, R. G., Miller, D. O., Leech, M., Goeta, A. E. & Howard, J. A. K. (2005). Polyhedron, 24, 807–821.
  • Moreno, Y., Salgado, Y., Garland, M. T. & Baggio, R. (2007). Acta Cryst. C63, m487–m489. [PubMed]
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography