PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1217.
Published online 2008 August 30. doi:  10.1107/S1600536808027165
PMCID: PMC2960477

Hexakis(2-amino-4-methyl­pyridine-κN 1)dioxidohexa-μ4-sulfido-hexa­copper(I)divanadium(V)

Abstract

The title compound, [Cu6V2O2S6(C6H8N2)6], is constructed from six CuS3N and two VOS3 distorted tetra­hedra, forming an octa­nuclear V/S/Cu cluster with C i symmetry. The geometry around the V atoms is slightly distorted tetra­hedral, while there are large distortions from ideal tetra­hedral geometry for the Cu atoms. Adjacent metal–metal distances range from 2.693 (1) to 2.772 (10) Å, indicating weak metal–metal inter­actions in the cluster.

Related literature

The most relevant known analog of the title compound is hexa­kis(μ4-sulfido)-dioxohexa­kis(triphenyl­phosphine) -hexa­copper(I)divanadium(V) (Zheng et al., 2001 [triangle]), For related literature, see: Du et al. (1992 [triangle]); Holm (1992 [triangle]); Hou et al. (1996 [triangle]); Liu et al. (1995 [triangle]); Naruta et al. (1994 [triangle]); Zhang et al. (1996 [triangle], 2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1217-scheme1.jpg

Experimental

Crystal data

  • [Cu6V2O2S6(C6H8N2)6]
  • M r = 1356.34
  • Hexagonal, An external file that holds a picture, illustration, etc.
Object name is e-64-m1217-efi1.jpg
  • a = 14.139 (2) Å
  • c = 20.830 (4) Å
  • V = 3606.2 (10) Å3
  • Z = 3
  • Mo Kα radiation
  • μ = 3.28 mm−1
  • T = 293 (2) K
  • 0.3 × 0.2 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.465, T max = 0.611
  • 6168 measured reflections
  • 1837 independent reflections
  • 1092 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.128
  • S = 1.02
  • 1837 reflections
  • 97 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027165/bv2103sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027165/bv2103Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Natural Science Foundation of Jiangsu Educational Office

supplementary crystallographic information

Comment

In the past two decades, considerable attention has been directed to the study of tetrathiometalate anions [MXS3]n- (X=O, S; M=V, Mo, W, Re) cluster compounds, since these complexes play a special role in catalysis reactions (Du et al., 1992), biological processes (Holm et al., 1992) and advanced materials (Naruta et al., 1994). These moieties can react as multidentate ligands with a wide variety of metal ions, such as Cu, Ag, Au, Zn, Cd, Hg, Fe, Co, Ni, Pd, Pt, Sn, and Ru to form a wide range of novel structures (Hou et al., 1996). More than 300 heterothiometallic cluster compounds containing these moieties have been synthesized and extensively studied (Zhang et al.,, 2001). However, crystal structures of these clusters containing 2-amino-4-methylpyridine ligands have not been reported until now.

In order to explore the chemistry of Mo(W)/S/Cu(Ag) clusters extensively, we have synthesized such a cluster by reaction in solution at normal temperatures. The solid-state molecular structure of the octanuclear neutral cluster 1 is shown in Fig. 1. It contains a cluster core [V2Cu6S6O2], of which the V2Cu6 atoms form a distorted cube, shown in Fig. 2. Each µ4-S atom is bonded to three Cu atoms and one V atom constructing each face of the dodecahedron. The geometry around the V atoms is slightly distorted tetrahedral with S–V–S 109.97 (5)° and S–V–O 108.97 (5)°, and the V–S bonds, 2.2382 (15) Å, are somewhat longer than those of the free [VS4]3- anion as expected [2.17 Å in the ammonium salt]. The coordination geometry of every Cu atom, bonded to three µ4-S atoms and one terminal ligand 2-amino-4-methylpyridine, is strongly distorted from an ideal tetrahedron with S—Cu—N angles varying from 104.52 (13)° to 121.11 (14)°. This phenomenon may arise from the steric effect of the bulky 2-amino-4-methylpyridine ligands. The Cu—N distance of 2.033 (4) Å is somewhat longer than the Cu—N distance found in [V2S4O3(CuPPh3)4(CuMeCN)2] complexes (Zhang et al.,, 1996). The Cu—S distances between 2.2886 (15) Å and 2.4701 (16) Å are comparable to those reported in (Et4N)3[(VS4Cu4(Et2dtc)(PhS)3] (Et2dtc=diethyldithiocarbamate) complexes (mean Cu—S = 2.236 (5) Å)(Liuet al., 1995).

In the preparation of the title compound, one S atom of the [VS4]3- unit is replaced by an O atom and [VS4]3- becomes [VS3O]3-. The V—O distance 1.618 (6) Å is a typical double bond distance. The adjacent metal-metal distances range from 2.6932 (11) Å to 2.7725 (10) Å, and are slightly shorter than normal V—Cu and Cu—Cu distances, indicating that there are weak metal-metal interactions. The terminal 2-amino-4-methylpyridine ligand is present in the usual monodentate mode. The C1—N1, C5—N1 and C1—N2 distances of 1.344 (6) Å, 1.344 (7) Å and 1.350 (7) Å, respectively, are typical Csp2—Nsp2 values.

Experimental

To a solution of 2-amino-4-methylpyridine (0.0230 g, 0.1 mmol) in dimethylformamide (DMF) (10 ml) were added a solution of CuI (0.0741 g, 0.2 mmol) and (NH4)3VS4 suspended in DMF (5 ml). The reaction mixture was stirred at room temperature for about 8 h. The deep brown solution was filtered and slow diffution of i-PrOH/MeCN to the solution, resulted in black prismatic crystals suitable for X-ray analysis.

Refinement

The amino hydrogen atoms were found from Fourier difference maps and fixed with N—H bond lengths of 0.90 Å. The H atoms of the aromatic group were geometrically idealized. All the H atoms were refined isotropically with isotropic vibration parameters related to the atoms to which they are bonded with Uĩso~ = 1.2 U~eq~ (Uĩso~ = 1.5U~eq~ for methyl H atoms).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted.
Fig. 2.
Cubic arrangement of metal atoms.

Crystal data

[Cu6V2O2S6(C6H8N2)6]Z = 3
Mr = 1356.34F000 = 2040
Hexagonal, R3Dx = 1.874 Mg m3
Hall symbol: -R 3Mo Kα radiation λ = 0.71073 Å
a = 14.139 (2) ÅCell parameters from 6634 reflections
b = 14.139 (2) Åθ = 1.9–27.5º
c = 20.830 (4) ŵ = 3.28 mm1
α = 90ºT = 293 (2) K
β = 90ºBlock, black
γ = 120º0.3 × 0.2 × 0.15 mm
V = 3606.2 (10) Å3

Data collection

Bruker APEXII CCD diffractometer1837 independent reflections
Radiation source: fine-focus sealed tube1092 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.054
T = 293(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −17→18
Tmin = 0.465, Tmax = 0.611k = −12→18
6168 measured reflectionsl = −26→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.128  w = 1/[σ2(Fo2) + (0.0525P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
1837 reflectionsΔρmax = 0.58 e Å3
97 parametersΔρmin = −0.69 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.15031 (5)0.98780 (5)0.96002 (3)0.0233 (3)
V10.00001.00000.88657 (7)0.0207 (4)
S10.14481 (11)0.99064 (11)1.07850 (6)0.0200 (4)
N10.2966 (4)1.0004 (4)0.9392 (2)0.0247 (12)
N20.2279 (4)0.8233 (4)0.9034 (2)0.0412 (14)
H2A0.16310.81070.91200.049*
H2B0.23730.77230.88780.049*
C20.4198 (5)0.9427 (5)0.9031 (3)0.0269 (14)
H2C0.42950.88700.88650.032*
O10.00001.00000.8089 (3)0.0252 (16)
C10.3149 (5)0.9230 (5)0.9147 (2)0.0227 (13)
C40.4909 (5)1.1207 (5)0.9417 (3)0.0309 (15)
H4A0.54921.18930.95180.037*
C50.3854 (5)1.0969 (5)0.9528 (3)0.0296 (15)
H5A0.37491.15110.97100.036*
C30.5092 (5)1.0422 (5)0.9155 (3)0.0255 (14)
C60.6221 (5)1.0633 (6)0.9020 (3)0.0424 (18)
H6A0.67441.13710.91340.064*
H6B0.62891.05220.85710.064*
H6C0.63561.01390.92670.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0191 (4)0.0213 (4)0.0307 (4)0.0111 (4)0.0002 (3)0.0007 (3)
V10.0197 (6)0.0197 (6)0.0226 (9)0.0098 (3)0.0000.000
S10.0180 (8)0.0194 (8)0.0234 (7)0.0099 (7)−0.0012 (6)0.0018 (6)
N10.027 (3)0.030 (3)0.020 (2)0.016 (3)−0.002 (2)−0.003 (2)
N20.026 (3)0.030 (3)0.063 (4)0.011 (3)0.012 (3)−0.007 (3)
C20.025 (4)0.034 (4)0.030 (3)0.022 (3)0.006 (3)−0.002 (3)
O10.030 (2)0.030 (2)0.016 (3)0.0150 (12)0.0000.000
C10.024 (4)0.023 (3)0.021 (3)0.012 (3)−0.002 (3)−0.003 (3)
C40.022 (4)0.029 (4)0.039 (4)0.010 (3)−0.003 (3)−0.003 (3)
C50.031 (4)0.021 (4)0.037 (4)0.013 (3)0.004 (3)−0.004 (3)
C30.024 (4)0.037 (4)0.022 (3)0.020 (3)−0.001 (3)0.003 (3)
C60.029 (4)0.066 (5)0.040 (4)0.030 (4)0.006 (3)0.006 (4)

Geometric parameters (Å, °)

Cu1—N12.033 (4)N1—C51.344 (7)
Cu1—S1i2.2886 (15)N1—C11.344 (6)
Cu1—S1ii2.3353 (15)N2—C11.350 (7)
Cu1—S12.4701 (16)N2—H2A0.8600
Cu1—V12.6932 (11)N2—H2B0.8600
Cu1—Cu1ii2.7725 (10)C2—C31.366 (8)
Cu1—Cu1i2.7725 (10)C2—C11.387 (7)
V1—O11.618 (6)C2—H2C0.9300
V1—S1ii2.2382 (15)C4—C31.373 (8)
V1—S1iii2.2382 (15)C4—C51.374 (7)
V1—S1i2.2382 (15)C4—H4A0.9300
V1—Cu1iv2.6932 (11)C5—H5A0.9300
V1—Cu1v2.6932 (11)C3—C61.498 (7)
S1—V1iii2.2382 (15)C6—H6A0.9600
S1—Cu1ii2.2886 (15)C6—H6B0.9600
S1—Cu1i2.3353 (15)C6—H6C0.9600
N1—Cu1—S1i121.11 (14)S1iii—V1—Cu1126.41 (7)
N1—Cu1—S1ii107.71 (14)S1i—V1—Cu154.36 (4)
S1i—Cu1—S1ii104.91 (7)Cu1iv—V1—Cu190.91 (4)
N1—Cu1—S1104.52 (13)Cu1v—V1—Cu190.91 (4)
S1i—Cu1—S1109.83 (6)V1iii—S1—Cu1ii73.01 (5)
S1ii—Cu1—S1108.29 (5)V1iii—S1—Cu1i72.12 (5)
N1—Cu1—V1132.40 (12)Cu1ii—S1—Cu1i112.24 (6)
S1i—Cu1—V152.63 (4)V1iii—S1—Cu1111.28 (7)
S1ii—Cu1—V152.27 (4)Cu1ii—S1—Cu171.15 (4)
S1—Cu1—V1122.30 (5)Cu1i—S1—Cu170.41 (4)
N1—Cu1—Cu1ii114.62 (14)C5—N1—C1116.4 (5)
S1i—Cu1—Cu1ii124.25 (4)C5—N1—Cu1115.9 (4)
S1ii—Cu1—Cu1ii57.07 (4)C1—N1—Cu1127.6 (4)
S1—Cu1—Cu1ii51.37 (4)C1—N2—H2A120.0
V1—Cu1—Cu1ii90.71 (3)C1—N2—H2B120.0
N1—Cu1—Cu1i127.78 (13)H2A—N2—H2B120.0
S1i—Cu1—Cu1i57.48 (4)C3—C2—C1121.3 (5)
S1ii—Cu1—Cu1i123.48 (4)C3—C2—H2C119.4
S1—Cu1—Cu1i52.52 (4)C1—C2—H2C119.4
V1—Cu1—Cu1i90.71 (3)N1—C1—N2118.1 (5)
Cu1ii—Cu1—Cu1i87.63 (4)N1—C1—C2121.6 (5)
O1—V1—S1ii108.97 (5)N2—C1—C2120.2 (5)
O1—V1—S1iii108.97 (5)C3—C4—C5119.3 (5)
S1ii—V1—S1iii109.97 (5)C3—C4—H4A120.3
O1—V1—S1i108.97 (5)C5—C4—H4A120.3
S1ii—V1—S1i109.97 (5)N1—C5—C4124.1 (5)
S1iii—V1—S1i109.97 (5)N1—C5—H5A117.9
O1—V1—Cu1iv124.62 (3)C4—C5—H5A117.9
S1ii—V1—Cu1iv54.36 (4)C2—C3—C4117.2 (5)
S1iii—V1—Cu1iv55.61 (4)C2—C3—C6121.0 (5)
S1i—V1—Cu1iv126.41 (7)C4—C3—C6121.8 (6)
O1—V1—Cu1v124.62 (3)C3—C6—H6A109.5
S1ii—V1—Cu1v126.41 (7)C3—C6—H6B109.5
S1iii—V1—Cu1v54.36 (4)H6A—C6—H6B109.5
S1i—V1—Cu1v55.61 (4)C3—C6—H6C109.5
Cu1iv—V1—Cu1v90.91 (4)H6A—C6—H6C109.5
O1—V1—Cu1124.62 (3)H6B—C6—H6C109.5
S1ii—V1—Cu155.61 (4)

Symmetry codes: (i) y−1, −x+y, −z+2; (ii) xy+1, x+1, −z+2; (iii) −x, −y+2, −z+2; (iv) −y+1, xy+2, z; (v) −x+y−1, −x+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2103).

References

  • Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wiscon­sin, USA.
  • Du, S. W., Zhu, N. Y., Chen, P. C. & Wu, X. T. (1992). Angew. Chem. Int. Ed. Engl.31, 1085–1089.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Holm, R. H. (1992). Adv. Inorg. Chem.38, 1–10.
  • Hou, H. W., Xin, X. Q. & Shi, S. (1996). Coord. Chem. Rev.153, 25–56.
  • Liu, Q. T., Yang, Y., Huang, L. R., Wu, D. X., Kang, B. S., Chen, C. N., Deng, Y. H. & Lu, J. X. (1995). Inorg. Chem.34, 1884–1893.
  • Naruta, Y., Sasayama, M. & Sasaki, T. (1994). Angew. Chem. Int. Ed. Engl.33, 1839–1843.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Zhang, C., Jin, G., Chen, J., Xin, X. & Qian, K. (2001). Coord. Chem. Rev.213, 51–72.
  • Zhang, H. H., Yu, X. F., Yang, R. S., Zheng, F. K., Huang, L. Y. & Zhou, R. P. (1996). Chin. J. Struct. Chem.15, 353-357.
  • Zheng, F. K., Guo, G. C., Zhou, G. W., Zhang, X. & Huang, J. S. (2001). Chin. J. Struct. Chem.20, 489–493.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography