PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1734.
Published online 2008 August 9. doi:  10.1107/S1600536808024884
PMCID: PMC2960476

2-Benzyl­imino­meth­yl-6-bromo-4-chloro­phenol

Abstract

The title mol­ecule, C14H11BrClNO, adopts a trans configuration with respect to the C=N double bond. The dihedral angle between the two aromatic rings is 70.4 (5)°. An intra­molecular O—H(...)N hydrogen bond is observed between the hydroxyl and imine groups.

Related literature

For related literature, see: Ali et al. (2002 [triangle]); Cukurovali et al. (2002 [triangle]); Tarafder et al. (2002 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1734-scheme1.jpg

Experimental

Crystal data

  • C14H11BrClNO
  • M r = 324.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1734-efi1.jpg
  • a = 4.3334 (8) Å
  • b = 12.8976 (14) Å
  • c = 23.892 (2) Å
  • β = 92.992 (1)°
  • V = 1333.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.27 mm−1
  • T = 298 (2) K
  • 0.40 × 0.37 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.355, T max = 0.676
  • 6753 measured reflections
  • 2325 independent reflections
  • 1699 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.176
  • S = 1.06
  • 2325 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 1.47 e Å−3
  • Δρmin = −0.76 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808024884/ci2649sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808024884/ci2649Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for research grant No. 08JZ09 from the Phytochemistry Key Laboratory of Shaanxi Province.

supplementary crystallographic information

Comment

Schiff base compounds have been of great interest for many years. These compounds play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures. As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here.

Bond lengths in the title molecule (Fig. 1) have normal values (Allen et al.,1987). The C1═N1 bond length of 1.267 (9) Å conforms to the value for a double bond. The dihedral angle between the two aromatic rings is 70.4 (5)°. As expected, the molecule adopts a trans configuration about the C═N bond [C8—N1—C1—C2 = -178.6 (6)°]. An intramolecular O—H···N hydrogen bond is observed between hydroxyl and imine groups (Table 1).

Experimental

3-Bromine-5-chlorosalicylaldehyde (0.1 mmol, 23.55 mg) and 1-benzylamine (0.1 mmol, 10.7 mg) were added to methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 7 d, yellow block-shaped crystals of the title compound were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 54%). Analysis found: C 51.76, H 4.0%; calculated for C14H11BrClNO: C 51.77, H 3.39%.

Refinement

All H atoms were placed in geometrically idealized positions [O-H = 0.82 Å and C-H = 0.93–0.97 Å] and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The highest unassigned peak in the difference map is located 0.85 and 1.05 Å from atoms Cl1 and C6, respectively.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability ellipsoids. The dashed line represents a hydrogen bond.
Fig. 2.
The crystal packing of the title compound, viewed down the b axis.

Crystal data

C14H11BrClNOF000 = 648
Mr = 324.60Dx = 1.617 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2314 reflections
a = 4.3334 (8) Åθ = 3.0–23.6º
b = 12.8976 (14) ŵ = 3.27 mm1
c = 23.892 (2) ÅT = 298 (2) K
β = 92.992 (1)ºBlock, yellow
V = 1333.5 (3) Å30.40 × 0.37 × 0.13 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2325 independent reflections
Radiation source: fine-focus sealed tube1699 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.068
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −5→5
Tmin = 0.355, Tmax = 0.676k = −14→15
6753 measured reflectionsl = −28→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.176  w = 1/[σ2(Fo2) + (0.0638P)2 + 4.7838P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2325 reflectionsΔρmax = 1.47 e Å3
163 parametersΔρmin = −0.76 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.1330 (2)0.05445 (6)0.34840 (4)0.0688 (3)
Cl11.1495 (6)0.47661 (15)0.37758 (10)0.0761 (6)
N10.4056 (13)0.2399 (4)0.1816 (2)0.0495 (14)
O10.7218 (12)0.1150 (3)0.2472 (2)0.0588 (13)
H10.60610.13230.22050.088*
C10.4902 (15)0.3140 (6)0.2137 (3)0.0465 (16)
H1A0.41040.37980.20620.056*
C20.7087 (14)0.3002 (5)0.2620 (3)0.0409 (14)
C30.8091 (15)0.1982 (5)0.2763 (3)0.0419 (15)
C41.0094 (15)0.1881 (5)0.3238 (3)0.0442 (15)
C51.1108 (15)0.2704 (5)0.3547 (3)0.0425 (15)
H51.24210.26090.38640.051*
C61.0135 (16)0.3711 (5)0.3381 (3)0.0476 (16)
C70.8123 (16)0.3849 (5)0.2934 (3)0.0481 (16)
H70.74340.45110.28390.058*
C80.1902 (16)0.2605 (6)0.1331 (3)0.0562 (19)
H8A0.08750.32640.13800.067*
H8B0.03390.20660.13020.067*
C90.3671 (15)0.2630 (6)0.0799 (3)0.0480 (17)
C100.4684 (18)0.3549 (7)0.0600 (3)0.066 (2)
H100.42660.41630.07860.080*
C110.635 (2)0.3571 (9)0.0117 (4)0.082 (3)
H110.70640.4196−0.00210.099*
C120.691 (2)0.2664 (10)−0.0149 (4)0.086 (3)
H120.80060.2675−0.04730.103*
C130.594 (2)0.1762 (9)0.0043 (4)0.084 (3)
H130.63860.1154−0.01460.101*
C140.4270 (18)0.1718 (7)0.0517 (4)0.069 (2)
H140.35570.10870.06460.083*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0795 (6)0.0510 (5)0.0758 (6)0.0131 (4)0.0027 (4)0.0117 (4)
Cl10.0979 (16)0.0525 (11)0.0767 (14)−0.0047 (10)−0.0060 (12)−0.0098 (10)
N10.039 (3)0.066 (4)0.044 (3)0.000 (3)0.003 (3)0.003 (3)
O10.076 (3)0.047 (3)0.053 (3)0.000 (2)0.001 (2)−0.002 (2)
C10.039 (4)0.056 (4)0.045 (4)0.002 (3)0.013 (3)0.009 (3)
C20.039 (3)0.046 (3)0.040 (4)−0.001 (3)0.016 (3)0.001 (3)
C30.042 (4)0.042 (3)0.043 (4)−0.001 (3)0.016 (3)0.001 (3)
C40.040 (4)0.049 (4)0.045 (4)0.004 (3)0.019 (3)0.008 (3)
C50.042 (4)0.047 (3)0.039 (4)0.002 (3)0.008 (3)0.001 (3)
C60.049 (4)0.048 (4)0.046 (4)−0.001 (3)0.009 (3)−0.003 (3)
C70.053 (4)0.042 (3)0.050 (4)0.005 (3)0.011 (3)0.000 (3)
C80.035 (4)0.078 (5)0.055 (5)0.000 (3)−0.002 (3)0.001 (4)
C90.037 (4)0.068 (4)0.038 (4)0.002 (3)−0.007 (3)0.002 (3)
C100.052 (5)0.082 (6)0.065 (5)0.000 (4)−0.002 (4)0.007 (4)
C110.059 (5)0.115 (8)0.072 (6)0.000 (5)−0.003 (5)0.028 (6)
C120.062 (6)0.144 (10)0.051 (6)0.013 (6)0.005 (4)0.006 (6)
C130.068 (6)0.113 (8)0.070 (6)0.022 (6)−0.007 (5)−0.028 (6)
C140.055 (5)0.081 (6)0.071 (6)0.004 (4)−0.010 (4)−0.010 (5)

Geometric parameters (Å, °)

Br1—C41.890 (6)C7—H70.93
Cl1—C61.741 (7)C8—C91.518 (10)
N1—C11.267 (9)C8—H8A0.97
N1—C81.473 (9)C8—H8B0.97
O1—C31.325 (8)C9—C101.359 (10)
O1—H10.82C9—C141.386 (11)
C1—C21.465 (9)C10—C111.392 (12)
C1—H1A0.93C10—H100.93
C2—C71.387 (9)C11—C121.360 (14)
C2—C31.422 (9)C11—H110.93
C3—C41.397 (9)C12—C131.326 (14)
C4—C51.353 (9)C12—H120.93
C5—C61.416 (9)C13—C141.377 (13)
C5—H50.93C13—H130.93
C6—C71.355 (9)C14—H140.93
C1—N1—C8119.5 (6)N1—C8—H8A109.7
C3—O1—H1109.5C9—C8—H8A109.7
N1—C1—C2122.7 (6)N1—C8—H8B109.7
N1—C1—H1A118.7C9—C8—H8B109.7
C2—C1—H1A118.7H8A—C8—H8B108.2
C7—C2—C3120.7 (6)C10—C9—C14119.8 (8)
C7—C2—C1120.6 (6)C10—C9—C8119.9 (7)
C3—C2—C1118.7 (6)C14—C9—C8120.3 (7)
O1—C3—C4120.0 (6)C9—C10—C11119.9 (9)
O1—C3—C2123.2 (6)C9—C10—H10120.0
C4—C3—C2116.9 (6)C11—C10—H10120.0
C5—C4—C3122.7 (6)C12—C11—C10118.9 (10)
C5—C4—Br1117.8 (5)C12—C11—H11120.6
C3—C4—Br1119.4 (5)C10—C11—H11120.6
C4—C5—C6118.9 (6)C13—C12—C11121.7 (10)
C4—C5—H5120.6C13—C12—H12119.1
C6—C5—H5120.6C11—C12—H12119.1
C7—C6—C5120.7 (6)C12—C13—C14120.6 (10)
C7—C6—Cl1120.7 (5)C12—C13—H13119.7
C5—C6—Cl1118.6 (5)C14—C13—H13119.7
C6—C7—C2120.1 (6)C13—C14—C9119.0 (9)
C6—C7—H7120.0C13—C14—H14120.5
C2—C7—H7120.0C9—C14—H14120.5
N1—C8—C9109.6 (5)
C8—N1—C1—C2−178.6 (6)C5—C6—C7—C2−2.7 (10)
N1—C1—C2—C7175.2 (6)Cl1—C6—C7—C2179.2 (5)
N1—C1—C2—C3−5.7 (9)C3—C2—C7—C60.7 (10)
C7—C2—C3—O1−178.8 (6)C1—C2—C7—C6179.8 (6)
C1—C2—C3—O12.1 (9)C1—N1—C8—C9102.8 (7)
C7—C2—C3—C41.2 (9)N1—C8—C9—C10−94.4 (8)
C1—C2—C3—C4−177.9 (5)N1—C8—C9—C1485.3 (8)
O1—C3—C4—C5178.9 (6)C14—C9—C10—C11−0.7 (11)
C2—C3—C4—C5−1.1 (9)C8—C9—C10—C11179.0 (6)
O1—C3—C4—Br1−3.9 (8)C9—C10—C11—C120.4 (12)
C2—C3—C4—Br1176.1 (4)C10—C11—C12—C13−0.6 (14)
C3—C4—C5—C6−0.8 (9)C11—C12—C13—C141.0 (14)
Br1—C4—C5—C6−178.1 (5)C12—C13—C14—C9−1.2 (13)
C4—C5—C6—C72.7 (10)C10—C9—C14—C131.1 (11)
C4—C5—C6—Cl1−179.1 (5)C8—C9—C14—C13−178.6 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.590 (7)147

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2649).

References

  • Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Keat, T. B. (2002). J. Inorg. Biochem.92, 141–148. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. J. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2000). SMART and, SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem.27, 171–176.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2547–2554.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography