PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1189–m1190.
Published online 2008 August 20. doi:  10.1107/S1600536808025646
PMCID: PMC2960475

Dichlorido(4,4′-di-tert-butyl-2,2′-bi­pyridine-κ2 N,N′)gold(III) tetrachlorido­aurate(III) acetonitrile solvate

Abstract

In the title compound, [AuCl2(C9H12N)2][AuCl4]·C2H3N, there is a mirror plane passing through Au and the central C—C bond of the bipyridyl ligand in the cation, and through Au and two Cl atoms of the anion. A cis-AuCl2N2 square-planar geometry for the cation and a square-planar AuCl4 geometry for the anion result. The two C atoms and the N atom of the acetonitrile mol­ecule all have m site symmetries. In the crystal structure, weak C—H(...)Cl inter­actions may help to establish the packing.

Related literature

For related structures, see: Abbate et al. (2000 [triangle]); Adams & Strähle (1982 [triangle]); Bjernemose et al. (2004 [triangle]); Hayoun et al. (2006 [triangle]); McInnes et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1189-scheme1.jpg

Experimental

Crystal data

  • [AuCl2(C9H12N)2][AuCl4]·C2H3N
  • M r = 916.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1189-efi2.jpg
  • a = 6.7880 (9) Å
  • b = 14.2270 (19) Å
  • c = 14.1330 (19) Å
  • β = 97.151 (2)°
  • V = 1354.3 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 11.43 mm−1
  • T = 150 (2) K
  • 0.14 × 0.10 × 0.01 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.298, T max = 0.894
  • 14949 measured reflections
  • 3888 independent reflections
  • 2860 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.079
  • S = 1.01
  • 3888 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 1.59 e Å−3
  • Δρmin = −1.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808025646/hb2776sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808025646/hb2776Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Shahid Beheshti University and Islamic Azad University, North Tehran Branch, for financial support.

supplementary crystallographic information

Comment

Several AuIII complexes, with formula, [AuCl2(N—N)], such as [AuCl2(bipy)][BF4], (II), (McInnes et al., 1995), [AuCl2(bipy)](NO3), (III), (Bjernemose et al., 2004), [AuCl2(bipy)][AuBr4], (IV), (Hayoun et al., 2006) and [AuCl2(phen)]Cl.H2O, (V), (Abbate et al., 2000) [where bipy is 2,2'-bipyridine and phen is 1,10-phenanthroline] have been synthesized and characterized by single-crystal X-ray diffraction methods.

Other AuIII complexes, with formula, [AuCl2L2], such as [AuCl2(py)2][AuCl4], (VI) and [AuCl2(py)2]Cl.H2O, (VII), (Adams & Strähle 1982) [where py is pyridine] have also bee prepared and characterized. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I) (Fig. 1) contains one half-cation, one half-anion and one half-acetonitrile molecule; the whole assemblage is symmetric according to a mirror plane. Both Au ions have square-planar coordination (Table 1) and the individual bond lengths and angles are in good agreement with the corresponding values in (II), (III), (IV), (V), (VI) and (VII).

In the crystal of (I), weak intermolecular C—H···Cl hydrogen bonds (Table 2) link the molecules to form a supramolecular structure (Fig. 2 and Fig. 3).

Experimental

A solution of 4,4'-di-tert-butyl-2,2'-bipyridine (0.15 g, 0.56 mmol) in acetonitrile (40 ml) was added to a solution of HAuCl4.3H2O, (0.22 g, 0.56 mmol) in EtOH (50 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, yellow laths and prisms of (I) were isolated (yield 0.38 g; 74.0%).

Refinement

All H atoms were positioned geometrically (C—H = 0.93-0.96Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
View of the molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level and H atoms omitted for clarity. The symmetry codes a and b both refer to (x, 1/2 - y, z).
Fig. 2.
A view of the packing and the hydrogen bonding (dashed lines) of (I) down the a axis in the unit cell.
Fig. 3.
View of the unit-cell packing of (I) down the c axis.

Crystal data

[AuCl2(C9H12N1)2][AuCl4]·C2H3NF000 = 856
Mr = 916.09Dx = 2.247 Mg m3
Monoclinic, P21/mMo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2ybCell parameters from 2450 reflections
a = 6.7880 (9) Åθ = 2.9–24.8º
b = 14.2270 (19) ŵ = 11.43 mm1
c = 14.1330 (19) ÅT = 150 (2) K
β = 97.151 (2)ºLath, yellow
V = 1354.3 (3) Å30.14 × 0.10 × 0.01 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer3888 independent reflections
Radiation source: sealed tube2860 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.060
T = 150(2) Kθmax = 29.5º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003)h = −9→9
Tmin = 0.298, Tmax = 0.894k = −19→19
14949 measured reflectionsl = −19→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.079  w = 1/[σ2(Fo2) + (0.0318P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3888 reflectionsΔρmax = 1.60 e Å3
155 parametersΔρmin = −1.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Au10.23789 (4)0.25000−0.04727 (2)0.0241 (1)
Cl10.2075 (2)0.13933 (12)−0.16278 (11)0.0366 (5)
N10.2670 (6)0.3421 (3)0.0624 (3)0.0238 (14)
C10.3143 (8)0.3571 (4)0.2320 (4)0.0258 (17)
C20.2920 (7)0.3000 (4)0.1509 (4)0.0222 (16)
C30.2636 (8)0.4365 (4)0.0544 (4)0.0286 (17)
C40.2861 (8)0.4940 (4)0.1338 (4)0.0303 (17)
C50.3113 (8)0.4559 (4)0.2252 (4)0.0277 (17)
C60.3361 (8)0.5158 (4)0.3150 (4)0.0287 (17)
C70.5416 (9)0.4930 (4)0.3701 (4)0.0345 (19)
C80.1694 (9)0.4913 (4)0.3758 (4)0.0333 (19)
C90.3254 (9)0.6207 (4)0.2926 (5)0.035 (2)
N20.3784 (17)0.250000.4696 (8)0.066 (4)
C100.104 (2)0.250000.5775 (11)0.087 (6)
C110.2608 (17)0.250000.5153 (9)0.049 (4)
Au20.79109 (4)0.250000.14539 (2)0.0258 (1)
Cl20.8353 (4)0.250000.30734 (16)0.0402 (8)
Cl30.7908 (2)0.40938 (11)0.14566 (12)0.0363 (5)
Cl40.7455 (3)0.25000−0.01937 (17)0.0364 (7)
H10.331400.329200.292000.0310*
H30.245700.46360−0.006000.0340*
H40.284300.558900.126100.0360*
H7A0.642200.501100.328700.0520*
H7B0.542900.429200.392200.0520*
H7C0.567400.534600.423700.0520*
H8A0.183000.529500.432200.0500*
H8B0.178900.426100.393600.0500*
H8C0.042600.502900.339500.0500*
H9A0.431800.637500.257100.0520*
H9B0.337200.655700.351100.0520*
H9C0.200600.634800.255600.0520*
H10A0.073200.186400.593200.1300*0.500
H10B−0.012700.279700.545300.1300*0.500
H10C0.148200.283900.635000.1300*0.500

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Au10.0226 (2)0.0279 (2)0.0216 (2)0.00000.0016 (1)0.0000
Cl10.0483 (9)0.0351 (8)0.0257 (8)0.0000 (7)0.0023 (7)−0.0050 (7)
N10.023 (2)0.024 (2)0.024 (3)−0.0009 (19)0.0014 (19)−0.003 (2)
C10.023 (3)0.025 (3)0.029 (3)0.002 (2)0.002 (2)0.004 (2)
C20.014 (2)0.038 (3)0.015 (3)0.000 (2)0.003 (2)0.001 (2)
C30.033 (3)0.029 (3)0.024 (3)−0.001 (3)0.004 (2)0.002 (3)
C40.032 (3)0.025 (3)0.033 (3)−0.001 (2)0.000 (3)0.000 (3)
C50.021 (3)0.032 (3)0.031 (3)−0.001 (2)0.007 (2)−0.001 (3)
C60.029 (3)0.024 (3)0.032 (3)0.005 (2)0.000 (3)−0.002 (3)
C70.036 (3)0.036 (4)0.030 (3)0.002 (3)−0.002 (3)−0.006 (3)
C80.034 (3)0.035 (4)0.031 (3)−0.002 (3)0.004 (3)−0.007 (3)
C90.036 (3)0.035 (4)0.032 (4)−0.001 (3)−0.001 (3)−0.003 (3)
N20.081 (8)0.053 (6)0.068 (7)0.00000.020 (6)0.0000
C100.109 (12)0.079 (10)0.080 (10)0.00000.043 (9)0.0000
C110.061 (7)0.035 (6)0.051 (7)0.00000.012 (6)0.0000
Au20.0194 (2)0.0261 (2)0.0318 (2)0.00000.0033 (1)0.0000
Cl20.0509 (14)0.0399 (13)0.0290 (12)0.00000.0018 (10)0.0000
Cl30.0365 (8)0.0275 (8)0.0448 (10)−0.0009 (6)0.0046 (7)0.0040 (7)
Cl40.0272 (10)0.0439 (13)0.0377 (12)0.00000.0022 (9)0.0000

Geometric parameters (Å, °)

Au1—Cl12.2590 (17)C1—H10.9300
Au1—N12.020 (4)C3—H30.9300
Au1—Cl1i2.2590 (17)C4—H40.9300
Au1—N1i2.020 (4)C7—H7B0.9600
Au2—Cl22.271 (2)C7—H7A0.9600
Au2—Cl32.2675 (16)C7—H7C0.9600
Au2—Cl42.311 (2)C8—H8A0.9600
Au2—Cl3i2.2675 (16)C8—H8C0.9600
N1—C31.348 (7)C8—H8B0.9600
N1—C21.378 (7)C9—H9B0.9600
N2—C111.088 (17)C9—H9C0.9600
C1—C51.409 (8)C9—H9A0.9600
C1—C21.398 (8)C10—C111.462 (19)
C2—C2i1.423 (8)C10—H10Bi0.9600
C3—C41.382 (8)C10—H10Ci0.9600
C4—C51.392 (8)C10—H10Ai0.9600
C5—C61.521 (8)C10—H10A0.9600
C6—C81.544 (8)C10—H10B0.9600
C6—C91.526 (8)C10—H10C0.9600
C6—C71.545 (8)
Cl1—Au1—N1176.24 (13)H7A—C7—H7C109.00
Cl1—Au1—Cl1i88.38 (6)C6—C7—H7C109.00
Cl1—Au1—N1i95.38 (13)H7A—C7—H7B109.00
Cl1i—Au1—N195.38 (13)H7B—C7—H7C109.00
N1—Au1—N1i80.86 (17)C6—C8—H8C110.00
Cl1i—Au1—N1i176.24 (13)C6—C8—H8A109.00
Cl2—Au2—Cl3i89.91 (4)C6—C8—H8B109.00
Cl2—Au2—Cl389.91 (4)H8A—C8—H8B109.00
Cl2—Au2—Cl4179.90 (8)H8A—C8—H8C109.00
Cl3i—Au2—Cl490.10 (4)H8B—C8—H8C109.00
Cl3—Au2—Cl490.10 (4)H9A—C9—H9B109.00
Cl3—Au2—Cl3i179.77 (6)H9A—C9—H9C110.00
Au1—N1—C2113.8 (3)H9B—C9—H9C110.00
Au1—N1—C3125.7 (4)C6—C9—H9A109.00
C2—N1—C3120.5 (5)C6—C9—H9B109.00
C2—C1—C5121.7 (5)C6—C9—H9C109.00
C1—C2—C2i125.5 (5)N2—C11—C10179.5 (14)
N1—C2—C2i115.8 (5)C11—C10—H10Ci110.00
N1—C2—C1118.7 (5)C11—C10—H10A110.00
N1—C3—C4121.5 (5)C11—C10—H10B110.00
C3—C4—C5120.8 (5)C11—C10—H10C110.00
C1—C5—C6120.2 (5)C11—C10—H10Ai110.00
C1—C5—C4116.8 (5)C11—C10—H10Bi110.00
C4—C5—C6123.0 (5)H10Ai—C10—H10B60.00
C8—C6—C9108.5 (5)H10B—C10—H10Bi52.00
C5—C6—C7107.6 (4)H10B—C10—H10Ci141.00
C5—C6—C8109.0 (5)H10Ai—C10—H10C52.00
C5—C6—C9112.2 (5)H10Bi—C10—H10C141.00
C7—C6—C8110.5 (5)H10C—C10—H10Ci60.00
C7—C6—C9109.1 (5)H10Ai—C10—H10Bi109.00
C5—C1—H1119.00H10Ai—C10—H10Ci109.00
C2—C1—H1119.00H10Bi—C10—H10Ci109.00
N1—C3—H3119.00H10A—C10—H10B109.00
C4—C3—H3119.00H10A—C10—H10C109.00
C5—C4—H4120.00H10A—C10—H10Ai141.00
C3—C4—H4120.00H10A—C10—H10Bi60.00
C6—C7—H7B109.00H10A—C10—H10Ci52.00
C6—C7—H7A109.00H10B—C10—H10C109.00
Cl1i—Au1—N1—C2−179.5 (3)N1—C2—C2i—N1i0.0 (6)
Cl1i—Au1—N1—C30.5 (4)N1—C2—C2i—C1i−179.8 (5)
N1i—Au1—N1—C20.5 (3)C1—C2—C2i—N1i179.8 (5)
N1i—Au1—N1—C3−179.6 (4)C1—C2—C2i—C1i0.0 (8)
Au1—N1—C2—C1179.8 (4)N1—C3—C4—C5−0.6 (8)
Au1—N1—C2—C2i−0.4 (5)C3—C4—C5—C10.6 (8)
C3—N1—C2—C1−0.2 (7)C3—C4—C5—C6−179.8 (5)
C3—N1—C2—C2i179.6 (5)C1—C5—C6—C760.9 (6)
Au1—N1—C3—C4−179.6 (4)C1—C5—C6—C8−58.9 (7)
C2—N1—C3—C40.4 (8)C1—C5—C6—C9−179.1 (5)
C5—C1—C2—N10.2 (8)C4—C5—C6—C7−118.7 (6)
C5—C1—C2—C2i−179.6 (5)C4—C5—C6—C8121.4 (6)
C2—C1—C5—C4−0.3 (8)C4—C5—C6—C91.3 (8)
C2—C1—C5—C6−180.0 (5)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···Cl3ii0.932.663.561 (6)162
C3—H3···Cl1i0.932.643.231 (6)122

Symmetry codes: (ii) −x+1, −y+1, −z; (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2776).

References

  • Abbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). Inorg. Chim. Acta, 311, 1–5.
  • Adams, H. N. & Strähle, J. (1982). Z. Anorg. Allg. Chem.485, 65–80.
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719–m1721.
  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem.45, 6120–6122. [PubMed]
  • McInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023–2025.
  • Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography