PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1210.
Published online 2008 August 30. doi:  10.1107/S1600536808027438
PMCID: PMC2960474

Tris[μ-2,2′-(azinodimethylidyne)diphenolato-κ4 O,N:N′,O′]diiron(III) tetra­hydro­furan tetra­solvate

Abstract

In the title binuclear iron(III) complex, [Fe2(C14H10N2O2)3]·4C4H8O or [Fe2(salda)3]·4THF [H2salda = 2,2′-(azinidimethyl­ene)diphenolate and THF is tetra­hydro­furan], the ligand possesses a rotationally flexible single N—N bond. Three dinucleating O,N:N′,O′-donor ligands provide three diazine (=N—N=) bridges between the metal ions, yielding a binuclear triple helicate structure with crystallographic C 2 symmetry, the rotation axis bis­ecting one N—N bond.

Related literature

For related literature, see: Seo et al. (2000 [triangle]); Gao et al. (2004 [triangle]); Oleksi et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1210-scheme1.jpg

Experimental

Crystal data

  • [Fe2(C14H10N2O2)3]·4C4H8O
  • M r = 1114.84
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1210-efi1.jpg
  • a = 15.189 (5) Å
  • b = 19.163 (6) Å
  • c = 18.917 (6) Å
  • V = 5506 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.59 mm−1
  • T = 293 (2) K
  • 0.40 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.798, T max = 0.891
  • 21523 measured reflections
  • 4856 independent reflections
  • 3520 reflections with I > 2σ(I)
  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.083
  • wR(F 2) = 0.222
  • S = 1.08
  • 4856 reflections
  • 343 parameters
  • H-atom parameters constrained
  • Δρmax = 0.96 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027438/cf2210sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027438/cf2210Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (grant No. 20771068) and the Provincial Natural Science Foundation of Shanxi (grant No. 2007011024) for support of this work.

supplementary crystallographic information

Comment

During recent decades, the study of helical coordination complexes or helicates has become an area of intense research activity, due to their intriguing potential applications in enantioselective synthesis and asymmetric catalysis, designing nonlinear optical materials, magnetic materials and porous materials, probing DNA structures, and understanding helical self-organization processes operative in nature (Seo et al., 2000; Gao et al., 2004; Oleksi et al., 2006). In this paper, we report the synthesis and crystal structure of the title complex [Fe2(salda)3].4THF. Due to the presence of 6 aromatic rings around two Fe(III) ions, the complex displays a large hydrophobic surface and a small diameter (~1.5 nm). These characteristics can be driving forces for the non-covalent recognition of DNA, biological labels and nanoparticle probes by the helicate. The molecular structure of [Fe2(salda)3].4THF is shown in Fig. 1. In the complex, each of the three ligands coordinates the two metal ions via the two phenolate O and the two imine N atoms. Thus, the metal ions are in facial O3N3 coordination environments and are connected by three diaza (═N—N═) bridges to yield a binuclear triple helicate. The Fe···Fe distance spanned by the triple N—N bridges is 3.9615 (16) Å. The three Fe—N—N—Fe torsion angles are -48.1 (5)° and two symmetry-equivalent at -67.6 (3)°; The complex has C2 symmetry with a 2-fold rotation axis through the midpoints of Fe1···Fe1A and N2—N2A (symmetry code as in Fig. 2). A packing diagram is shown in Fig. 3.

Experimental

The ligand H2salda was prepared by reacting hydrazine with 2 equiv of salicylaldehyde followed by recrystallization from methanol. To a solution of 360 mg (1.5 mmol) of H2salda dissolved in 30 ml of methanol was added a solution of 3% (g/100 ml) sodium methoxide in 0.4 ml methanol. FeCl3.H2O (270 mg, 1 mmol) in methanol (15 ml) was added dropwise to the resulting brownish-black solution. The reaction mixture was stirred and refluxed on a water bath for 2 h. The resulting precipitate was filtered off, and washed successively with methanol and THF prior to drying in vacuo. The dried powder was dissolved in THF and crystals suitable for X-ray analysis were obtained after two weeks at room temperature.

Refinement

The H atoms were treated as riding atoms, with C—H = 0.93–0.97 Å, Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: A, -x, y, 1/2-z.]
Fig. 2.
The coordination environment of the Fe(III) atoms. All non-hydrogen atoms are represented by 30% displacement probability ellipsoids. [Symmetry code: A, -x, y, 1/2-z.]
Fig. 3.
The packing of the title compound.

Crystal data

[Fe2(C14H10N2O2)3]·4C4H8ODx = 1.345 Mg m3
Mr = 1114.84Mo Kα radiation λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 30326 reflections
a = 15.189 (5) Åθ = 1.7–25.0º
b = 19.163 (6) ŵ = 0.59 mm1
c = 18.917 (6) ÅT = 293 (2) K
V = 5506 (3) Å3Block, black
Z = 40.40 × 0.40 × 0.20 mm
F000 = 2336

Data collection

Bruker SMART CCD diffractometer4856 independent reflections
Radiation source: fine-focus sealed tube3520 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.080
T = 293(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −18→11
Tmin = 0.798, Tmax = 0.891k = −21→22
21523 measured reflectionsl = −21→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.222  w = 1/[σ2(Fo2) + (0.1154P)2 + 5.1454P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4856 reflectionsΔρmax = 0.96 e Å3
343 parametersΔρmin = −0.42 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C220.140 (2)0.6626 (11)0.2989 (14)0.317 (18)
H22A0.13760.69840.26280.380*
H22B0.09970.67570.33640.380*
Fe10.10583 (4)0.30805 (3)0.18882 (3)0.0431 (3)
O20.0996 (2)0.34432 (18)0.09508 (17)0.0530 (9)
O30.2127 (2)0.35565 (19)0.21251 (18)0.0560 (9)
O10.1549 (2)0.21832 (18)0.16629 (19)0.0539 (9)
N20.0242 (2)0.39989 (19)0.21748 (19)0.0423 (9)
N1−0.0194 (2)0.2536 (2)0.17748 (18)0.0410 (9)
N30.0962 (2)0.2897 (2)0.3007 (2)0.0416 (9)
C7−0.0316 (3)0.1927 (2)0.1519 (3)0.0478 (11)
H7−0.08960.17790.14670.057*
C60.0360 (3)0.1452 (2)0.1305 (3)0.0473 (11)
C50.0111 (4)0.0804 (3)0.1022 (3)0.0631 (15)
H5−0.04850.07040.09750.076*
C40.0709 (4)0.0318 (3)0.0814 (3)0.0728 (17)
H40.0528−0.01100.06310.087*
C30.1602 (4)0.0479 (3)0.0882 (3)0.0688 (16)
H30.20210.01530.07420.083*
C20.1870 (4)0.1102 (3)0.1147 (3)0.0604 (14)
H20.24690.11970.11760.072*
C10.1264 (3)0.1605 (2)0.1380 (2)0.0461 (11)
C140.0218 (3)0.4552 (3)0.1792 (2)0.0462 (11)
H14−0.01170.49230.19610.055*
C130.0658 (3)0.4651 (3)0.1129 (2)0.0464 (11)
C120.0676 (4)0.5322 (3)0.0848 (3)0.0568 (13)
H120.04160.56840.11000.068*
C110.1067 (4)0.5466 (3)0.0209 (3)0.0662 (16)
H110.10880.59200.00360.079*
C100.1426 (4)0.4923 (3)−0.0169 (3)0.0673 (16)
H100.16850.5013−0.06050.081*
C90.1413 (4)0.4253 (3)0.0082 (3)0.0619 (14)
H90.16640.3899−0.01860.074*
C80.1028 (3)0.4088 (3)0.0735 (2)0.0481 (12)
C210.1480 (3)0.3112 (2)0.3498 (2)0.0453 (11)
H210.13290.30080.39630.054*
C200.2278 (3)0.3502 (2)0.3381 (3)0.0484 (12)
C190.2779 (4)0.3683 (3)0.3974 (3)0.0654 (15)
H190.25800.35600.44220.078*
C180.3563 (4)0.4040 (4)0.3904 (4)0.083 (2)
H180.38980.41530.43000.100*
C170.3842 (4)0.4227 (4)0.3237 (4)0.080 (2)
H170.43670.44720.31880.096*
C160.3368 (4)0.4064 (3)0.2649 (3)0.0660 (16)
H160.35770.41960.22060.079*
C150.2565 (3)0.3698 (2)0.2702 (3)0.0490 (12)
C230.2248 (11)0.6588 (9)0.3259 (10)0.250 (13)
H23A0.22410.66610.37660.300*
H23B0.26160.69440.30460.300*
C240.2577 (6)0.5921 (6)0.3100 (5)0.125 (3)
H24A0.27540.56830.35290.149*
H24B0.30840.59570.27900.149*
C250.1866 (5)0.5537 (5)0.2749 (5)0.103 (2)
H25A0.20580.53900.22840.123*
H25B0.17210.51240.30210.123*
C260.0389 (9)0.2553 (8)0.5461 (8)0.195 (6)
H26A0.00130.22260.52120.234*
H26B0.00780.29880.55370.234*
O50.1208 (6)0.2653 (5)0.5114 (4)0.182 (4)
C270.074 (2)0.2259 (13)0.6122 (9)0.319 (16)
H27A0.11070.25810.63820.382*
H27B0.02810.20680.64270.382*
O40.1119 (6)0.5964 (7)0.2687 (6)0.210 (4)
C290.1815 (9)0.2172 (7)0.5369 (8)0.176 (5)
H29A0.22430.23880.56810.212*
H29B0.21180.19310.49890.212*
C280.123 (2)0.1724 (9)0.5741 (11)0.336 (19)
H28A0.15410.14120.60580.403*
H28B0.08600.14560.54240.403*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C220.46 (4)0.135 (14)0.35 (3)0.10 (2)0.18 (3)0.072 (18)
Fe10.0335 (4)0.0488 (4)0.0470 (4)−0.0021 (3)0.0011 (3)−0.0014 (3)
O20.057 (2)0.057 (2)0.0457 (18)0.0009 (17)0.0023 (16)−0.0001 (16)
O30.042 (2)0.070 (2)0.055 (2)−0.0128 (17)0.0025 (17)0.0021 (17)
O10.0350 (18)0.054 (2)0.073 (2)0.0036 (16)−0.0004 (17)−0.0111 (18)
N20.037 (2)0.046 (2)0.044 (2)−0.0020 (17)0.0004 (17)0.0001 (17)
N10.031 (2)0.046 (2)0.046 (2)0.0018 (17)0.0020 (16)−0.0027 (17)
N30.031 (2)0.045 (2)0.048 (2)−0.0015 (16)0.0011 (17)0.0037 (17)
C70.037 (3)0.052 (3)0.055 (3)−0.007 (2)0.003 (2)−0.004 (2)
C60.044 (3)0.044 (3)0.054 (3)−0.003 (2)0.009 (2)−0.003 (2)
C50.055 (3)0.051 (3)0.083 (4)−0.006 (3)0.012 (3)−0.007 (3)
C40.074 (4)0.054 (3)0.091 (4)−0.003 (3)0.015 (3)−0.018 (3)
C30.065 (4)0.058 (3)0.083 (4)0.013 (3)0.021 (3)−0.008 (3)
C20.048 (3)0.057 (3)0.076 (4)0.006 (3)0.010 (3)−0.005 (3)
C10.048 (3)0.044 (3)0.047 (3)0.005 (2)0.004 (2)0.004 (2)
C140.041 (3)0.046 (3)0.052 (3)0.003 (2)−0.005 (2)−0.001 (2)
C130.037 (3)0.055 (3)0.047 (3)−0.003 (2)−0.003 (2)0.006 (2)
C120.052 (3)0.057 (3)0.061 (3)−0.002 (3)−0.003 (3)0.010 (3)
C110.061 (4)0.072 (4)0.066 (4)−0.010 (3)−0.007 (3)0.024 (3)
C100.061 (4)0.092 (5)0.049 (3)−0.014 (3)0.000 (3)0.016 (3)
C90.052 (3)0.083 (4)0.050 (3)−0.004 (3)0.002 (3)0.002 (3)
C80.036 (3)0.064 (3)0.044 (3)−0.005 (2)−0.009 (2)0.006 (2)
C210.040 (3)0.054 (3)0.042 (2)0.007 (2)0.001 (2)−0.002 (2)
C200.038 (3)0.049 (3)0.058 (3)−0.001 (2)−0.005 (2)−0.009 (2)
C190.049 (3)0.078 (4)0.069 (4)−0.001 (3)0.000 (3)−0.016 (3)
C180.054 (4)0.115 (5)0.080 (4)−0.020 (4)−0.015 (3)−0.032 (4)
C170.048 (3)0.103 (5)0.090 (5)−0.028 (3)−0.002 (3)−0.023 (4)
C160.044 (3)0.077 (4)0.077 (4)−0.020 (3)0.009 (3)−0.011 (3)
C150.038 (3)0.050 (3)0.059 (3)−0.002 (2)0.000 (2)−0.011 (2)
C230.224 (17)0.188 (15)0.34 (2)−0.160 (15)0.196 (18)−0.177 (16)
C240.085 (6)0.165 (9)0.124 (7)−0.052 (6)0.006 (5)0.001 (6)
C250.073 (5)0.115 (6)0.120 (6)−0.013 (5)0.002 (5)0.006 (5)
C260.164 (12)0.233 (15)0.187 (13)0.079 (11)0.089 (10)0.075 (11)
O50.163 (7)0.243 (9)0.139 (6)0.081 (7)0.057 (5)0.088 (6)
C270.52 (4)0.32 (3)0.115 (11)−0.11 (3)0.108 (18)−0.027 (15)
O40.122 (7)0.246 (12)0.264 (12)0.049 (8)−0.028 (7)−0.002 (10)
C290.148 (11)0.176 (11)0.204 (12)0.071 (10)−0.064 (10)−0.009 (10)
C280.62 (5)0.151 (14)0.24 (2)−0.18 (2)−0.12 (3)0.118 (15)

Geometric parameters (Å, °)

C22—C231.39 (3)C10—C91.368 (8)
C22—O41.46 (3)C10—H100.930
C22—H22A0.970C9—C81.402 (7)
C22—H22B0.970C9—H90.930
Fe1—O21.907 (3)C21—C201.441 (7)
Fe1—O31.916 (3)C21—H210.930
Fe1—O11.922 (3)C20—C191.399 (7)
Fe1—N32.150 (4)C20—C151.406 (7)
Fe1—N12.180 (4)C19—C181.381 (8)
Fe1—N22.220 (4)C19—H190.930
O2—C81.303 (6)C18—C171.378 (9)
O3—C151.306 (6)C18—H180.930
O1—C11.304 (6)C17—C161.362 (8)
N2—C141.285 (6)C17—H170.930
N2—N2i1.433 (7)C16—C151.411 (7)
N1—C71.276 (6)C16—H160.930
N1—N3i1.419 (5)C23—C241.406 (18)
N3—C211.286 (6)C23—H23A0.970
N3—N1i1.419 (5)C23—H23B0.970
C7—C61.430 (7)C24—C251.465 (11)
C7—H70.930C24—H24A0.970
C6—C51.403 (7)C24—H24B0.970
C6—C11.411 (7)C25—O41.403 (12)
C5—C41.360 (8)C25—H25A0.970
C5—H50.930C25—H25B0.970
C4—C31.398 (9)C26—O51.420 (13)
C4—H40.930C26—C271.47 (2)
C3—C21.357 (8)C26—H26A0.970
C3—H30.930C26—H26B0.970
C2—C11.405 (7)O5—C291.389 (12)
C2—H20.930C27—C281.46 (3)
C14—C131.433 (7)C27—H27A0.970
C14—H140.930C27—H27B0.970
C13—C121.393 (7)C29—C281.42 (2)
C13—C81.426 (7)C29—H29A0.970
C12—C111.375 (8)C29—H29B0.970
C12—H120.930C28—H28A0.970
C11—C101.375 (9)C28—H28B0.970
C11—H110.930
C23—C22—O4111.8 (16)C10—C9—H9119.2
C23—C22—H22A109.3C8—C9—H9119.2
O4—C22—H22A109.3O2—C8—C9120.3 (5)
C23—C22—H22B109.3O2—C8—C13122.6 (4)
O4—C22—H22B109.3C9—C8—C13117.0 (5)
H22A—C22—H22B107.9N3—C21—C20124.7 (4)
O2—Fe1—O394.95 (15)N3—C21—H21117.7
O2—Fe1—O198.00 (15)C20—C21—H21117.7
O3—Fe1—O198.58 (15)C19—C20—C15119.9 (5)
O2—Fe1—N3166.26 (15)C19—C20—C21117.5 (5)
O3—Fe1—N384.55 (14)C15—C20—C21122.6 (4)
O1—Fe1—N395.65 (15)C18—C19—C20121.0 (6)
O2—Fe1—N192.27 (14)C18—C19—H19119.5
O3—Fe1—N1172.09 (14)C20—C19—H19119.5
O1—Fe1—N183.57 (14)C17—C18—C19118.8 (6)
N3—Fe1—N187.67 (13)C17—C18—H18120.6
O2—Fe1—N284.86 (14)C19—C18—H18120.6
O3—Fe1—N292.21 (15)C16—C17—C18121.8 (6)
O1—Fe1—N2168.52 (14)C16—C17—H17119.1
N3—Fe1—N281.44 (14)C18—C17—H17119.1
N1—Fe1—N285.21 (14)C17—C16—C15120.8 (6)
C8—O2—Fe1129.4 (3)C17—C16—H16119.6
C15—O3—Fe1136.5 (3)C15—C16—H16119.6
C1—O1—Fe1136.2 (3)O3—C15—C20123.4 (4)
C14—N2—N2i118.0 (3)O3—C15—C16118.9 (5)
C14—N2—Fe1122.2 (3)C20—C15—C16117.8 (5)
N2i—N2—Fe1119.75 (17)C22—C23—C24107.4 (14)
C7—N1—N3i115.9 (4)C22—C23—H23A110.2
C7—N1—Fe1127.0 (3)C24—C23—H23A110.2
N3i—N1—Fe1117.1 (3)C22—C23—H23B110.2
C21—N3—N1i116.7 (4)C24—C23—H23B110.2
C21—N3—Fe1128.2 (3)H23A—C23—H23B108.5
N1i—N3—Fe1115.0 (3)C23—C24—C25106.9 (10)
N1—C7—C6125.8 (5)C23—C24—H24A110.3
N1—C7—H7117.1C25—C24—H24A110.3
C6—C7—H7117.1C23—C24—H24B110.3
C5—C6—C1119.0 (5)C25—C24—H24B110.3
C5—C6—C7118.5 (5)H24A—C24—H24B108.6
C1—C6—C7122.5 (4)O4—C25—C24110.0 (9)
C4—C5—C6122.5 (5)O4—C25—H25A109.7
C4—C5—H5118.7C24—C25—H25A109.7
C6—C5—H5118.7O4—C25—H25B109.7
C5—C4—C3118.0 (5)C24—C25—H25B109.7
C5—C4—H4121.0H25A—C25—H25B108.2
C3—C4—H4121.0O5—C26—C2797.6 (14)
C2—C3—C4121.3 (5)O5—C26—H26A112.2
C2—C3—H3119.3C27—C26—H26A112.2
C4—C3—H3119.3O5—C26—H26B112.2
C3—C2—C1121.6 (5)C27—C26—H26B112.2
C3—C2—H2119.2H26A—C26—H26B109.8
C1—C2—H2119.2C29—O5—C26109.3 (10)
O1—C1—C2119.6 (5)C28—C27—C2691.9 (13)
O1—C1—C6122.8 (4)C28—C27—H27A113.3
C2—C1—C6117.6 (5)C26—C27—H27A113.3
N2—C14—C13126.0 (5)C28—C27—H27B113.3
N2—C14—H14117.0C26—C27—H27B113.3
C13—C14—H14117.0H27A—C27—H27B110.6
C12—C13—C8119.3 (5)C25—O4—C22103.8 (14)
C12—C13—C14117.8 (5)O5—C29—C2899.1 (14)
C8—C13—C14122.8 (4)O5—C29—H29A112.0
C11—C12—C13122.1 (5)C28—C29—H29A112.0
C11—C12—H12119.0O5—C29—H29B112.0
C13—C12—H12119.0C28—C29—H29B112.0
C12—C11—C10118.4 (5)H29A—C29—H29B109.6
C12—C11—H11120.8C29—C28—C2798.2 (14)
C10—C11—H11120.8C29—C28—H28A112.1
C9—C10—C11121.6 (5)C27—C28—H28A112.1
C9—C10—H10119.2C29—C28—H28B112.1
C11—C10—H10119.2C27—C28—H28B112.1
C10—C9—C8121.5 (6)H28A—C28—H28B109.8
O3—Fe1—O2—C8−52.8 (4)C4—C3—C2—C11.4 (9)
O1—Fe1—O2—C8−152.2 (4)Fe1—O1—C1—C2165.2 (4)
N3—Fe1—O2—C834.5 (9)Fe1—O1—C1—C6−15.9 (7)
N1—Fe1—O2—C8123.9 (4)C3—C2—C1—O1176.7 (5)
N2—Fe1—O2—C839.0 (4)C3—C2—C1—C6−2.2 (8)
O2—Fe1—O3—C15165.6 (5)C5—C6—C1—O1−177.2 (5)
O1—Fe1—O3—C15−95.5 (5)C7—C6—C1—O11.5 (7)
N3—Fe1—O3—C15−0.6 (5)C5—C6—C1—C21.6 (7)
N1—Fe1—O3—C159.8 (14)C7—C6—C1—C2−179.7 (5)
N2—Fe1—O3—C1580.6 (5)N2i—N2—C14—C13179.9 (5)
O2—Fe1—O1—C1−73.9 (5)Fe1—N2—C14—C133.2 (7)
O3—Fe1—O1—C1−170.2 (4)N2—C14—C13—C12−169.5 (5)
N3—Fe1—O1—C1104.5 (5)N2—C14—C13—C814.1 (8)
N1—Fe1—O1—C117.5 (4)C8—C13—C12—C11−2.2 (8)
N2—Fe1—O1—C129.8 (10)C14—C13—C12—C11−178.7 (5)
O2—Fe1—N2—C14−22.5 (4)C13—C12—C11—C101.9 (8)
O3—Fe1—N2—C1472.3 (4)C12—C11—C10—C9−1.0 (9)
O1—Fe1—N2—C14−127.5 (7)C11—C10—C9—C80.3 (9)
N3—Fe1—N2—C14156.4 (4)Fe1—O2—C8—C9147.1 (4)
N1—Fe1—N2—C14−115.2 (4)Fe1—O2—C8—C13−34.9 (6)
O2—Fe1—N2—N2i160.9 (4)C10—C9—C8—O2177.6 (5)
O3—Fe1—N2—N2i−104.4 (4)C10—C9—C8—C13−0.5 (7)
O1—Fe1—N2—N2i55.8 (9)C12—C13—C8—O2−176.6 (4)
N3—Fe1—N2—N2i−20.2 (4)C14—C13—C8—O2−0.3 (7)
N1—Fe1—N2—N2i68.2 (4)C12—C13—C8—C91.4 (7)
O2—Fe1—N1—C786.4 (4)C14—C13—C8—C9177.8 (5)
O3—Fe1—N1—C7−117.7 (11)N1i—N3—C21—C20−178.5 (4)
O1—Fe1—N1—C7−11.4 (4)Fe1—N3—C21—C20−3.4 (7)
N3—Fe1—N1—C7−107.4 (4)N3—C21—C20—C19−178.6 (5)
N2—Fe1—N1—C7171.0 (4)N3—C21—C20—C151.1 (7)
O2—Fe1—N1—N3i−92.2 (3)C15—C20—C19—C18−1.3 (8)
O3—Fe1—N1—N3i63.7 (12)C21—C20—C19—C18178.3 (5)
O1—Fe1—N1—N3i170.0 (3)C20—C19—C18—C171.0 (10)
N3—Fe1—N1—N3i74.1 (3)C19—C18—C17—C16−0.5 (11)
N2—Fe1—N1—N3i−7.5 (3)C18—C17—C16—C150.4 (11)
O2—Fe1—N3—C21−85.7 (7)Fe1—O3—C15—C20−1.1 (8)
O3—Fe1—N3—C212.8 (4)Fe1—O3—C15—C16178.7 (4)
O1—Fe1—N3—C21100.9 (4)C19—C20—C15—O3−179.0 (5)
N1—Fe1—N3—C21−175.8 (4)C21—C20—C15—O31.3 (7)
N2—Fe1—N3—C21−90.2 (4)C19—C20—C15—C161.2 (7)
O2—Fe1—N3—N1i89.4 (7)C21—C20—C15—C16−178.5 (5)
O3—Fe1—N3—N1i177.9 (3)C17—C16—C15—O3179.5 (6)
O1—Fe1—N3—N1i−84.0 (3)C17—C16—C15—C20−0.7 (8)
N1—Fe1—N3—N1i−0.7 (3)O4—C22—C23—C244(2)
N2—Fe1—N3—N1i84.9 (3)C22—C23—C24—C25−2.9 (19)
N3i—N1—C7—C6−176.0 (4)C23—C24—C25—O40.7 (13)
Fe1—N1—C7—C65.4 (7)C27—C26—O5—C2927.3 (18)
N1—C7—C6—C5−179.0 (5)O5—C26—C27—C28−54 (2)
N1—C7—C6—C12.3 (8)C24—C25—O4—C221.6 (15)
C1—C6—C5—C4−0.3 (8)C23—C22—O4—C25−4(2)
C7—C6—C5—C4−179.1 (5)C26—O5—C29—C2812.4 (18)
C6—C5—C4—C3−0.5 (9)O5—C29—C28—C27−48 (2)
C5—C4—C3—C20.0 (9)C26—C27—C28—C2964 (2)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2210).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z. & Yan, C.-H. (2004). J. Am. Chem. Soc.126, 1419–1429. [PubMed]
  • Oleksi, A., Blanco, A. G., Boer, R., Usön, I., Aymami, J., Rodger, A., Hannon, M. J. & Coll, M. (2006). Angew. Chem. Int. Ed.45, 1227–1231. [PubMed]
  • Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982–986. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography