PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o391.
Published online 2008 January 9. doi:  10.1107/S1600536807068535
PMCID: PMC2960466

3,3′-(2-Oxocyclo­pentane-1,3-di­yl)dipropane­nitrile

Abstract

The complete mol­ecule of the title compound, C11H14N2O, is generated by crystallographic twofold symmetry, with the C=O group lying on the rotation axis. In the crystal structure, weak C—H(...)N inter­actions form zigzag chains of mol­ecules.

Related literature

For the synthesis, see: Westman & Kober (1964 [triangle]). For a similar compound, see: Chen et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o391-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O
  • M r = 190.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o391-efi1.jpg
  • a = 18.261 (3) Å
  • b = 7.8182 (10) Å
  • c = 8.1943 (11) Å
  • β = 111.510 (9)°
  • V = 1088.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 294 (2) K
  • 0.24 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.971, T max = 0.992
  • 3003 measured reflections
  • 1114 independent reflections
  • 644 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.133
  • S = 1.03
  • 1114 reflections
  • 65 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Bruker, 1997 [triangle]); software used to prepare material for publication: SHELXTL).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068535/hb2685sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068535/hb2685Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound, (I), which was first prepared by Westman & Kober (1964), is as a intermediate in the synthesis of 6,7-dihydro-5H-cyclopenta[b]pyridine ramification. We report here its structure (Fig. 1). For a related structure, see Chen et al. (2007).

The complete molecule of (I) is generated by crystallographic 2-fold symmetry, with the C=O group lying on the rotation axis. In the crystal, weak C—H···N interactions (Table 1) lead to zigzag chains of molecules.

Experimental

The title compound was prepared according to the method of Westman & Kober (1964). Colourless blocks of (I) were obtained by slow evaporation of a methanol solution (m.p. 335–336 K).

Refinement

All the H atoms were positioned geometrically (C—H = 0.97–0.98 Å), and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of the molecular structure of (I). Displacement ellopsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radius. Symmetry code: (i) 2 - x, y, 1/2 - z.

Crystal data

C11H14N2OF000 = 408
Mr = 190.24Dx = 1.161 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 798 reflections
a = 18.261 (3) Åθ = 2.9–23.6º
b = 7.8182 (10) ŵ = 0.08 mm1
c = 8.1943 (11) ÅT = 294 (2) K
β = 111.510 (9)ºBlock, colorless
V = 1088.4 (3) Å30.24 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer1114 independent reflections
Radiation source: fine-focus sealed tube644 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.045
T = 294(2) Kθmax = 26.4º
ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 1997)h = −22→14
Tmin = 0.971, Tmax = 0.992k = −9→9
3003 measured reflectionsl = −10→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.133  w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1398P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
1114 reflectionsΔρmax = 0.15 e Å3
65 parametersΔρmin = −0.13 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.00001.0500 (2)0.25000.0639 (6)
N10.69534 (13)0.8243 (3)−0.3591 (3)0.0968 (8)
C11.00000.8948 (3)0.25000.0495 (7)
C20.95717 (10)0.7841 (2)0.0927 (2)0.0491 (5)
H20.98890.78180.01890.059*
C30.96129 (10)0.6064 (2)0.1722 (2)0.0555 (5)
H3A0.91740.58740.20970.067*
H3B0.96090.51840.08840.067*
C40.87656 (11)0.8505 (2)−0.0189 (2)0.0579 (6)
H4A0.88050.9706−0.04430.069*
H4B0.84170.84090.04610.069*
C50.84170 (11)0.7522 (3)−0.1902 (3)0.0627 (6)
H5A0.87200.7769−0.26300.075*
H5B0.84600.6305−0.16510.075*
C60.75994 (14)0.7945 (3)−0.2864 (3)0.0672 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0821 (14)0.0465 (12)0.0598 (12)0.0000.0223 (10)0.000
N10.0764 (15)0.1164 (18)0.0812 (15)0.0217 (12)0.0096 (11)−0.0174 (13)
C10.0539 (15)0.0485 (17)0.0538 (16)0.0000.0286 (13)0.000
C20.0550 (11)0.0493 (11)0.0462 (11)0.0005 (8)0.0222 (9)−0.0018 (8)
C30.0605 (11)0.0496 (11)0.0569 (11)−0.0020 (9)0.0221 (9)−0.0027 (9)
C40.0598 (12)0.0566 (12)0.0554 (12)0.0026 (9)0.0191 (10)−0.0027 (10)
C50.0624 (14)0.0638 (12)0.0570 (13)0.0006 (10)0.0159 (11)−0.0072 (10)
C60.0680 (14)0.0697 (15)0.0570 (13)0.0067 (12)0.0147 (11)−0.0095 (11)

Geometric parameters (Å, °)

O1—C11.213 (3)C3—H3A0.9700
N1—C61.134 (3)C3—H3B0.9700
C1—C21.511 (2)C4—C51.521 (2)
C1—C2i1.511 (2)C4—H4A0.9700
C2—C41.512 (2)C4—H4B0.9700
C2—C31.525 (2)C5—C61.448 (3)
C2—H20.9800C5—H5A0.9700
C3—C3i1.518 (3)C5—H5B0.9700
O1—C1—C2124.94 (10)H3A—C3—H3B109.0
O1—C1—C2i124.95 (10)C2—C4—C5111.70 (15)
C2—C1—C2i110.1 (2)C2—C4—H4A109.3
C1—C2—C4113.82 (14)C5—C4—H4A109.3
C1—C2—C3103.22 (15)C2—C4—H4B109.3
C4—C2—C3117.13 (15)C5—C4—H4B109.3
C1—C2—H2107.4H4A—C4—H4B107.9
C4—C2—H2107.4C6—C5—C4112.71 (17)
C3—C2—H2107.4C6—C5—H5A109.1
C3i—C3—C2104.12 (10)C4—C5—H5A109.1
C3i—C3—H3A110.9C6—C5—H5B109.1
C2—C3—H3A110.9C4—C5—H5B109.1
C3i—C3—H3B110.9H5A—C5—H5B107.8
C2—C3—H3B110.9N1—C6—C5178.1 (3)
O1—C1—C2—C4−39.96 (17)C4—C2—C3—C3i−157.50 (18)
C2i—C1—C2—C4140.04 (17)C1—C2—C4—C5170.57 (15)
O1—C1—C2—C3−167.96 (8)C3—C2—C4—C5−69.0 (2)
C2i—C1—C2—C312.04 (8)C2—C4—C5—C6170.72 (17)
C1—C2—C3—C3i−31.6 (2)

Symmetry codes: (i) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5B···N1ii0.972.543.466 (3)160

Symmetry codes: (ii) −x+3/2, y−1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2685).

References

  • Bruker (1997). SMART, SAINT, SADABS and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Y., Yang, J., Deng, Y., Li, G. & Wang, W. (2007). Acta Cryst. E63, o4054.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westman, T. L. & Kober, A. E. (1964). J. Org. Chem 29, 2448–2450.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography