PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m416–m417.
Published online 2008 January 25. doi:  10.1107/S1600536808002262
PMCID: PMC2960465

Bis[benzyl N′-(3-phenyl­prop-2-enyl­idene)hydrazinecarbodithio­ato-κ2 N′,S]copper(II)

Abstract

The CuII atom of the title complex, [Cu(C17H15N2S2)2], lies on a twofold rotation axis, and is in a distorted tetra­hedral geometry with the two bidentate N2S2 Schiff bases. In the crystal structure, the mol­ecules are inter­connected into chains along the c axis by weak C—H(...)S inter­molecular inter­actions. The crystal packing is further stabilized by C—H(...)π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For the synthesis and structures of S-benzyl­dithio­carbaza­tes, see: Ali & Tarafder (1977 [triangle]); Shanmuga Sundara Raj et al. (2000 [triangle]). For related CuII complexes, see: Ali et al. (2008 [triangle]); Castiñeiras et al. (1998 [triangle]); Goswami & Eichhorn (2000 [triangle]). For bioactivities of S-benzyl­dithio­carbazate metal complexes, see: Ali et al. (2002 [triangle], 2008 [triangle]); Tarafder et al. (2001 [triangle], 2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m416-scheme1.jpg

Experimental

Crystal data

  • [Cu(C17H15N2S2)2]
  • M r = 686.45
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m416-efi1.jpg
  • a = 36.1410 (7) Å
  • b = 9.9372 (2) Å
  • c = 8.7598 (2) Å
  • V = 3146.00 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.99 mm−1
  • T = 100.0 (1) K
  • 0.57 × 0.29 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.603, T max = 0.906
  • 84850 measured reflections
  • 6922 independent reflections
  • 5675 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.083
  • S = 1.04
  • 6922 reflections
  • 196 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808002262/ci2558sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002262/ci2558Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MTHT and MTI thank Rajshahi University for financial support. The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.

supplementary crystallographic information

Comment

Synthesis (Ali & Tarafder, 1977) and crystal structure (Shanmuga Sundara Raj et al., 2000) of S-benzyldithiocarbazate (SBDTC) have been reported. We have been greatly involved in the chemistry of Schiff bases derived from SBDTC, and also on their metal complexes because of their interesting physico-chemical properties and potentially useful biological activities (Ali et al., 2002, 2008; Tarafder et al., 2001, 2002). In continuation of our interests, we report herein the syntheses of the cinnamaldehyde Schiff base of SBDTC and its copper complex, along with the x-ray structural analysis of the four-coordinated CuII complex.

The CuII atom of the title complex, lies on a twofold rotation axis and the asymmetric unit therefore contains one-half of a molecule (Fig. 1). Based on other thiosemicarbazones (Ali et al., 2002; Tarafder et al., 2001, 2002), the coordination mode of the CuII complex is as expected, i.e bis-chelated through the two azomethine nitrogen atoms and the two thiolate sulfur atoms. The CuII center is in a distorted tetrahedral geometry with the N2S2 donor atoms of the two Schiff base ligands (Fig. 1). Both nitrogen atoms (N1 and N1A) and sulfur atoms (S1 and S1A) from the two ligands are coordinated at opposite positions. The N—Cu—N and S—Cu—S bond angles are 104.29 (5)° and 134.452 (14)°, respectively, and reflective of the elongation of the Cu—S bond length [ca 0.19 Å] over the Cu—N bond length. The Cu1—N1 and Cu1—S1 distances of 2.0663 (10) Å and 2.2648 (3) Å, respectively, are in the same range as those in other four coordination CuII complexes of the related Schiff base ligands (Ali et al., 2008; Castiñeiras et al., 1998; Goswami & Eichhorn, 2000). The CuII-bidentate rings are slightly non-planar. The Cu1—S1—N1A—N2A—C10 ring has a maximum deviation of 0.085 (1) Å for the N1A atom. The mean plane of the propenyl moiety (C7/C8/C9) makes a dihedral angle of 12.15 (9)° with mean plane of the attached C1–C6 benzene ring. The dihedral angle between the C1–C6 and C12–C17 phenyl rings of the two ligands is 8.73 (7)°. Bond lengths and angles observed in the Schiff base ligand are of normal values (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are interconnected by weak C—H···S intermolecular interactions (Table 1) into chains along the c axis. The crystal structure is further stabilized by C—H···π interactions (Table 2) involving the C1—C6 benzene ring (centroid Cg1).

Experimental

The Schiff base ligand was prepared by adding cinamaldehyde (1.32 g, 10 mmol) to a hot solution of S-benzyldithiocarbazate (SBDTC) (1.98 g, 10 mmol) in absolute ethanol (40 ml), as reported previously (Ali & Tarafder, 1977). The mixture was refluxed for 10 min. The yellow precipitate which formed was isolated and washed with hot ethanol. The yellow solid product was recrystallized from absolute ethanol (yield: 1.52 g, 46%). The copper complex was synthesized by adding the copper nitrate trihydrate (0.31 g, 0.5 mmol) in ethanol (10 ml) to a hot solution of the above Schiff base ligand (0.31 g, 1 mmol) in ethanol (80 ml) and the reaction mixture was refluxed for 5 min when a brownish precipitate was formed. The product was separated and washed with hot ethanol (yield: 0.32 g, 74%). Green single crystals of the title complex were recrystallized from a chloroform-absolute ethanol (10:3 V/V) solution after 20 d at room temperature.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å. The Uiso values were constrained to be 1.2Ueq of the carrier atom. The highest residual density peak is located 0.38 Å from Cu1 and the deepest hole is located 0.46 Å from S2.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Atoms labelled with the suffix A are generated by the symmetry operation (-x, y, 3/2 - z).
Fig. 2.
Part of the crystal packing of the title compound, viewed along the b axis. Intermolecular C—H···S weak interactions are shown as dashed lines.

Crystal data

[Cu(C17H15N2S2)2]F000 = 1420
Mr = 686.45Dx = 1.449 Mg m3
Orthorhombic, PbcnMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6922 reflections
a = 36.1410 (7) Åθ = 2.1–35.0º
b = 9.9372 (2) ŵ = 0.99 mm1
c = 8.7598 (2) ÅT = 100.0 (1) K
V = 3146.00 (11) Å3Plate, green
Z = 40.57 × 0.29 × 0.10 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6922 independent reflections
Radiation source: fine-focus sealed tube5675 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.047
Detector resolution: 8.33 pixels mm-1θmax = 35.0º
T = 100.0(1) Kθmin = 2.1º
ω scansh = −58→57
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −16→16
Tmin = 0.603, Tmax = 0.906l = −13→14
84850 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.083  w = 1/[σ2(Fo2) + (0.0303P)2 + 2.083P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6922 reflectionsΔρmax = 0.52 e Å3
196 parametersΔρmin = −0.43 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.00000.07778 (2)0.75000.01578 (5)
S1−0.056798 (8)−0.01045 (3)0.70614 (4)0.02194 (6)
S2−0.126264 (8)0.09538 (4)0.81392 (4)0.02454 (7)
N10.02535 (3)0.20538 (10)0.59588 (11)0.01718 (17)
N20.06393 (3)0.20720 (10)0.59855 (12)0.01796 (17)
C1−0.10931 (3)0.28518 (12)0.39861 (14)0.0206 (2)
H1A−0.10060.21480.45860.025*
C2−0.14653 (3)0.29131 (13)0.36079 (15)0.0229 (2)
H2A−0.16260.22520.39610.027*
C3−0.15998 (3)0.39565 (14)0.27034 (15)0.0239 (2)
H3A−0.18500.39980.24620.029*
C4−0.13588 (4)0.49338 (15)0.21640 (16)0.0251 (2)
H4A−0.14470.56250.15480.030*
C5−0.09847 (3)0.48806 (13)0.25450 (15)0.0222 (2)
H5A−0.08250.55390.21810.027*
C6−0.08476 (3)0.38468 (12)0.34685 (13)0.01828 (19)
C7−0.04535 (3)0.38225 (12)0.38369 (14)0.0192 (2)
H7A−0.03050.44680.33740.023*
C8−0.02862 (3)0.29470 (12)0.47880 (14)0.0194 (2)
H8A−0.04330.23410.53250.023*
C90.01065 (3)0.29035 (12)0.50134 (13)0.01849 (19)
H9A0.02580.34930.44740.022*
C10−0.07825 (3)0.11156 (12)0.81865 (13)0.01794 (19)
C11−0.14240 (3)0.20513 (14)0.96662 (15)0.0230 (2)
H11A−0.12950.18521.06110.028*
H11B−0.13810.29870.94050.028*
C12−0.18327 (3)0.17791 (13)0.98351 (14)0.0210 (2)
C13−0.19556 (4)0.07096 (16)1.07276 (17)0.0295 (3)
H13A−0.17840.01661.12230.035*
C14−0.23304 (4)0.04438 (17)1.08878 (18)0.0326 (3)
H14A−0.2409−0.02661.14990.039*
C15−0.25879 (3)0.12346 (16)1.01385 (16)0.0282 (3)
H15A−0.28390.10591.02460.034*
C16−0.24696 (4)0.22864 (16)0.92307 (19)0.0318 (3)
H16A−0.26420.28130.87170.038*
C17−0.20935 (4)0.25621 (15)0.90804 (18)0.0284 (3)
H17A−0.20160.32750.84710.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01427 (8)0.01721 (9)0.01586 (8)0.0000.00375 (6)0.000
S10.02087 (12)0.02213 (13)0.02284 (13)−0.00456 (10)0.00520 (10)−0.00534 (10)
S20.01540 (12)0.03281 (16)0.02541 (15)−0.00349 (11)−0.00031 (10)−0.00859 (12)
N10.0146 (4)0.0197 (4)0.0172 (4)0.0005 (3)0.0006 (3)−0.0007 (3)
N20.0132 (4)0.0216 (4)0.0190 (4)−0.0009 (3)0.0002 (3)0.0003 (3)
C10.0179 (5)0.0216 (5)0.0222 (5)0.0011 (4)0.0005 (4)0.0008 (4)
C20.0181 (5)0.0250 (5)0.0254 (6)−0.0006 (4)0.0010 (4)−0.0017 (5)
C30.0180 (5)0.0302 (6)0.0236 (6)0.0046 (4)−0.0021 (4)−0.0034 (5)
C40.0225 (5)0.0287 (6)0.0242 (6)0.0055 (5)−0.0033 (4)0.0034 (5)
C50.0213 (5)0.0231 (5)0.0222 (5)0.0013 (4)−0.0004 (4)0.0031 (4)
C60.0165 (4)0.0205 (5)0.0178 (5)0.0017 (4)−0.0001 (4)−0.0009 (4)
C70.0169 (4)0.0209 (5)0.0199 (5)−0.0002 (4)0.0008 (4)0.0006 (4)
C80.0153 (4)0.0224 (5)0.0203 (5)−0.0004 (4)0.0006 (4)0.0016 (4)
C90.0161 (4)0.0213 (5)0.0181 (5)−0.0003 (4)0.0005 (4)0.0009 (4)
C100.0159 (4)0.0213 (5)0.0167 (5)−0.0014 (4)0.0009 (3)0.0001 (4)
C110.0153 (5)0.0284 (6)0.0254 (6)−0.0008 (4)−0.0003 (4)−0.0058 (5)
C120.0149 (4)0.0257 (5)0.0223 (5)0.0001 (4)−0.0014 (4)−0.0032 (4)
C130.0198 (5)0.0381 (7)0.0308 (7)0.0006 (5)−0.0043 (5)0.0095 (6)
C140.0224 (6)0.0428 (8)0.0326 (7)−0.0063 (5)−0.0008 (5)0.0105 (6)
C150.0159 (5)0.0398 (7)0.0290 (6)−0.0030 (5)0.0005 (4)−0.0015 (6)
C160.0171 (5)0.0363 (7)0.0419 (8)0.0034 (5)−0.0039 (5)0.0057 (6)
C170.0190 (5)0.0294 (6)0.0370 (7)0.0005 (5)−0.0012 (5)0.0070 (5)

Geometric parameters (Å, °)

Cu1—N1i2.0663 (10)C6—C71.4606 (16)
Cu1—N12.0663 (10)C7—C81.3478 (17)
Cu1—S1i2.2648 (3)C7—H7A0.93
Cu1—S12.2649 (3)C8—C91.4335 (16)
S1—C101.7442 (12)C8—H8A0.93
S2—C101.7432 (11)C9—H9A0.93
S2—C111.8217 (13)C10—N2i1.3027 (15)
N1—C91.2965 (15)C11—C121.5088 (16)
N1—N21.3949 (13)C11—H11A0.97
N2—C10i1.3027 (15)C11—H11B0.97
C1—C21.3866 (16)C12—C171.3897 (18)
C1—C61.4037 (17)C12—C131.3922 (19)
C1—H1A0.93C13—C141.3871 (19)
C2—C31.3926 (19)C13—H13A0.93
C2—H2A0.93C14—C151.384 (2)
C3—C41.388 (2)C14—H14A0.93
C3—H3A0.93C15—C161.381 (2)
C4—C51.3937 (17)C15—H15A0.93
C4—H4A0.93C16—C171.3927 (19)
C5—C61.3983 (17)C16—H16A0.93
C5—H5A0.93C17—H17A0.93
N1i—Cu1—N1104.29 (5)C7—C8—C9123.27 (11)
N1i—Cu1—S1i121.90 (3)C7—C8—H8A118.4
N1—Cu1—S1i86.94 (3)C9—C8—H8A118.4
N1i—Cu1—S186.94 (3)N1—C9—C8120.88 (11)
N1—Cu1—S1121.90 (3)N1—C9—H9A119.6
S1i—Cu1—S1134.452 (19)C8—C9—H9A119.6
C10—S1—Cu192.17 (4)N2i—C10—S2118.41 (9)
C10—S2—C11104.25 (6)N2i—C10—S1130.18 (9)
C9—N1—N2114.32 (10)S2—C10—S1111.41 (6)
C9—N1—Cu1129.45 (8)C12—C11—S2106.15 (8)
N2—N1—Cu1116.12 (7)C12—C11—H11A110.5
C10i—N2—N1113.39 (10)S2—C11—H11A110.5
C2—C1—C6120.33 (11)C12—C11—H11B110.5
C2—C1—H1A119.8S2—C11—H11B110.5
C6—C1—H1A119.8H11A—C11—H11B108.7
C1—C2—C3120.49 (12)C17—C12—C13118.55 (11)
C1—C2—H2A119.8C17—C12—C11121.14 (12)
C3—C2—H2A119.8C13—C12—C11120.29 (11)
C4—C3—C2119.71 (11)C14—C13—C12120.92 (13)
C4—C3—H3A120.1C14—C13—H13A119.5
C2—C3—H3A120.1C12—C13—H13A119.5
C3—C4—C5120.07 (12)C15—C14—C13120.04 (14)
C3—C4—H4A120.0C15—C14—H14A120.0
C5—C4—H4A120.0C13—C14—H14A120.0
C4—C5—C6120.68 (12)C16—C15—C14119.66 (12)
C4—C5—H5A119.7C16—C15—H15A120.2
C6—C5—H5A119.7C14—C15—H15A120.2
C5—C6—C1118.71 (11)C15—C16—C17120.35 (13)
C5—C6—C7119.04 (11)C15—C16—H16A119.8
C1—C6—C7122.23 (11)C17—C16—H16A119.8
C8—C7—C6125.77 (11)C12—C17—C16120.46 (13)
C8—C7—H7A117.1C12—C17—H17A119.8
C6—C7—H7A117.1C16—C17—H17A119.8
N1i—Cu1—S1—C106.84 (5)C1—C6—C7—C8−5.87 (19)
N1—Cu1—S1—C10−98.11 (5)C6—C7—C8—C9174.88 (11)
S1i—Cu1—S1—C10140.38 (4)N2—N1—C9—C8176.16 (10)
N1i—Cu1—N1—C9−64.62 (10)Cu1—N1—C9—C8−7.90 (17)
S1i—Cu1—N1—C9173.21 (11)C7—C8—C9—N1179.00 (12)
S1—Cu1—N1—C930.76 (12)C11—S2—C10—N2i−11.46 (12)
N1i—Cu1—N1—N2111.27 (8)C11—S2—C10—S1168.25 (7)
S1i—Cu1—N1—N2−10.91 (7)Cu1—S1—C10—N2i−4.35 (12)
S1—Cu1—N1—N2−153.36 (7)Cu1—S1—C10—S2175.98 (6)
C9—N1—N2—C10i−172.92 (11)C10—S2—C11—C12−171.27 (9)
Cu1—N1—N2—C10i10.56 (12)S2—C11—C12—C17−94.14 (13)
C6—C1—C2—C30.38 (19)S2—C11—C12—C1384.28 (14)
C1—C2—C3—C40.7 (2)C17—C12—C13—C14−1.3 (2)
C2—C3—C4—C5−0.9 (2)C11—C12—C13—C14−179.71 (14)
C3—C4—C5—C60.1 (2)C12—C13—C14—C150.9 (2)
C4—C5—C6—C10.94 (19)C13—C14—C15—C160.1 (2)
C4—C5—C6—C7179.73 (12)C14—C15—C16—C17−0.7 (2)
C2—C1—C6—C5−1.18 (18)C13—C12—C17—C160.6 (2)
C2—C1—C6—C7−179.93 (11)C11—C12—C17—C16179.09 (13)
C5—C6—C7—C8175.39 (12)C15—C16—C17—C120.3 (2)

Symmetry codes: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13A···S2ii0.932.763.6698 (15)167
C11—H11A···Cg1iii0.972.983.5806 (14)121

Symmetry codes: (ii) x, −y, z+1/2; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2558).

References

  • Ali, M. A., Baker, H. J. H. A., Mirza, A. H., Smith, S. J., Gahan, L. R. & Bernhardt, P. V. (2008). Polyhedron, 27, 71–79.
  • Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B., Ali, A. M. & Manaf, A. (2002). J. Inorg. Biochem.92, 141–148. [PubMed]
  • Ali, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem.39, 1785–1788.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Castiñeiras, A., Bermejo, E., West, D. X., El-Sawaf, A. K. & Swearingen, K. (1998). Polyhedron, 17, 2751–2757.
  • Goswami, N. & Eichhorn, M. (2000). Inorg. Chim. Acta, 303, 271–276.
  • Shanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. & Grouse, K. A. (2000). Acta Cryst. C56, 1236–1237. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.
  • Tarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2001). Polyhedron, 20, 2363–2370.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography