PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m376.
Published online 2008 January 23. doi:  10.1107/S1600536808001335
PMCID: PMC2960463

Poly[tetra­aqua-μ3-pyridine-3,5-dicarboxyl­ato-strontium(II)]

Abstract

The reaction of strontium(II) nitrate with the proton-transfer compound (pdaH2)(py-3,5-dc)·H2O (where pda = propane-1,3-diamine and py-3,5-dcH2 = pyridine-3,5-dicarboxylic acid) leads to the formation of the title polymeric compound, [Sr(C7H3NO4)(H2O)4]n. The propane-1,3-diaminium cation is not incorporated in this crystal structure. The SrII atom lies on an inversion centre and is eight-coordinated by four O atoms from three py-3,5-dc ligands and four O atoms from four coordinated water mol­ecules. The coordination polyhedron of the SrII atom is a distorted dodeca­hedron. These binuclear units are connected via the carboxyl­ate O atoms to build a one-dimensional polymeric chain. In the crystal structure, non-covalant inter­actions consisting of hydrogen bonds (X—H(...)O, with X = O and C) and π–π stacking inter­actions [3.4604 (19) Å] connect the various components to form a supra­molecular structure.

Related literature

For related literature, see: Aghabozorg et al. (2006 [triangle], 2007 [triangle], 2008 [triangle]); Starosta et al. (2002a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m376-scheme1.jpg

Experimental

Crystal data

  • [Sr(C7H3NO4)(H2O)4]
  • M r = 324.79
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m376-efi1.jpg
  • a = 7.066 (2) Å
  • b = 8.308 (3) Å
  • c = 10.368 (3) Å
  • α = 69.405 (6)°
  • β = 72.144 (6)°
  • γ = 75.944 (6)°
  • V = 536.0 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 5.06 mm−1
  • T = 100 (2) K
  • 0.30 × 0.22 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (APEX2; Bruker, 2005 [triangle]) T min = 0.257, T max = 0.402
  • 4533 measured reflections
  • 2540 independent reflections
  • 2277 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.065
  • S = 0.99
  • 2540 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808001335/su2030sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001335/su2030Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

We have previously reported a proton transfer system, prepared using pyridine-3,5-dicarboxylic acid and propane-1,3-diamine (pdaH2)(py-3,5-dc).H2O (Aghabozorg et al. 2006; Aghabozorg et al., 2007). Pyridine-3,5-dicarboxylic acid is an interesting ligand because it is highly symmetrical, potentially multidentate and it can participate in hydrogen bonding interactions with N and O acceptors. It may also exhibit π–π interactions (Starosta et al., 2002a,b) and some polymeric Cd(II) complexes of this ligand have been published. Here we report on the crystal structure of the title polymeric compound, (I).

The compound (I) is a centrosymmetric polymer (Fig. 1). The Sr—O distances are in the range of 2.5240 (19)–2.7395 (18) Å, and the summation of the bond angles around of SrII atom is equal to 359.24°, indicating that the SrII atom is located in the center of the plane (O2i,O4W,O1ii,O3W,O2W). This shows that it has a distorted dodecahedral geometry (Fig. 2).

The carboxylate groups from the py-3,5-dc ligands link two SrII centers by two O1 atoms or two O2 atoms alternatively to form binuclear units and this results in the formation of a one-dimensional polymer chain. Each of the atoms, O1 and O2, from the py-3,5-dc ligands are connected to two SrII atoms, but only atoms O3, O4 and N1 from these ligands build hydrogen bonds with the coordinated water molecules. There are a large number of O—H···O, N—H···O and C—H···O hydrogen bonds with distances ranging from 2.739 (4) to 3.324 (4) Å (Table 2 and Fig. 3).

In the crystal structure of (I), noncovalant interactions consisting of hydrogen bonds, π–π stacking interactions of 3.4604 (19) Å between Cg1 and Cg1i (Fig. 4 and Table 1) [Cg1 is centroid of ring N1/C1–C5; symmetry code: (i) = -x, 1 - y, 2 - z)] connect the various components to form the supramolecular structure.

Experimental

Compound (I) was prepared by the reaction of (pdaH2)(py-3,5-dc).H2O (241.0 mg, 1.0 mmol) [Aghabozorg et al., 2006], in water (20 ml) with Sr(NO3)2 (105.8 mg, 0.5 mmol) in water (20 ml), in a 2:1 molar ratio. Colorless crystals were obtained by slow evaporation of the solvent at room temperature.

Refinement

All hydrogen atoms were located in difference Fourier maps. The water H-atoms were treated as riding atoms with Uiso(H) = 1.2 Ueq(O); O—H = 0.7018–0.9275 Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
Molecular structure of compound (I), with displacement ellipsoids drawn at the 50% probability level [H-atoms have been omitted for clarity; symmetry codes: A = -x, 1 - y, 1 - z and B = 1 - x, 1 - y, 1 - z].
Fig. 2.
A view of the distorted dodecahedral environment around the SrII atom.
Fig. 3.
A view along the a axis of the crystal packing of compound (I). Hydrogen bonds are shown as dashed lines.
Fig. 4.
π–π stacking interactions (Cg1–Cg1i) in compound (I) [Cg1: N1/C1–C5; symmetry code: (i) = -x, 1 - y, 2 - z].

Crystal data

[Sr(C7H3NO4)(H2O)4]Z = 2
Mr = 324.79F000 = 324
Triclinic, P1Dx = 2.012 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.066 (2) ÅCell parameters from 2708 reflections
b = 8.308 (3) Åθ = 2.6–30.0º
c = 10.368 (3) ŵ = 5.06 mm1
α = 69.405 (6)ºT = 100 (2) K
β = 72.144 (6)ºPrism, colourless
γ = 75.944 (6)º0.30 × 0.22 × 0.18 mm
V = 536.0 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer2540 independent reflections
Radiation source: fine-focus sealed tube2277 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.038
T = 100(2) Kθmax = 28.0º
ω scansθmin = 2.2º
Absorption correction: multi-scan(APEX2; Bruker, 2005)h = −8→9
Tmin = 0.257, Tmax = 0.402k = −10→10
4533 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.065  w = 1/[σ2(Fo2) + (0.0193P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2540 reflectionsΔρmax = 0.65 e Å3
154 parametersΔρmin = −0.66 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sr10.27281 (3)0.61146 (3)0.39986 (2)0.00977 (8)
O10.0595 (3)0.4107 (2)0.64828 (18)0.0145 (4)
O20.3414 (3)0.4771 (2)0.65401 (17)0.0134 (4)
O3−0.3603 (3)0.0688 (3)1.10676 (18)0.0171 (4)
O4−0.2944 (3)0.0464 (3)1.30871 (19)0.0208 (4)
N10.1904 (3)0.3128 (3)1.0958 (2)0.0117 (4)
C10.2362 (4)0.3684 (3)0.9544 (3)0.0106 (5)
H1A0.34690.43060.90640.013*
C20.1298 (4)0.3398 (3)0.8736 (2)0.0098 (5)
C3−0.0306 (4)0.2479 (3)0.9450 (2)0.0110 (5)
H3A−0.10610.22570.89310.013*
C4−0.0808 (4)0.1885 (3)1.0922 (3)0.0106 (5)
C50.0352 (4)0.2248 (3)1.1627 (3)0.0120 (5)
H5A0.00230.18491.26350.014*
C60.1813 (4)0.4129 (3)0.7142 (2)0.0103 (5)
C7−0.2567 (4)0.0930 (3)1.1741 (3)0.0115 (5)
O1W0.3572 (3)0.8563 (2)0.17360 (18)0.0157 (4)
H1WA0.35910.88110.08880.019*
H1WB0.44160.93160.16310.019*
O2W0.4291 (3)0.8227 (3)0.4569 (2)0.0253 (5)
H2WA0.50460.89980.40430.030*
H2WB0.38020.84040.53890.030*
O3W−0.0230 (3)0.8411 (3)0.4823 (2)0.0223 (4)
H3WA−0.10780.89360.42130.027*
H3WB−0.11450.78420.54170.027*
O4W0.3526 (3)0.3705 (3)0.2812 (3)0.0372 (6)
H4WA0.31920.34990.21940.045*
H4WB0.44240.29600.30080.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sr10.00856 (13)0.01397 (13)0.00712 (11)−0.00508 (8)−0.00166 (8)−0.00157 (8)
O10.0111 (9)0.0211 (11)0.0115 (8)−0.0067 (7)−0.0042 (7)−0.0012 (7)
O20.0096 (9)0.0179 (10)0.0100 (8)−0.0065 (7)−0.0011 (7)0.0008 (7)
O30.0166 (10)0.0243 (11)0.0120 (8)−0.0116 (8)−0.0025 (7)−0.0026 (8)
O40.0223 (11)0.0316 (13)0.0097 (8)−0.0172 (9)0.0009 (8)−0.0028 (8)
N10.0117 (11)0.0117 (11)0.0117 (10)−0.0014 (8)−0.0038 (8)−0.0028 (8)
C10.0089 (12)0.0102 (13)0.0122 (11)−0.0021 (9)−0.0020 (9)−0.0029 (10)
C20.0083 (12)0.0095 (13)0.0095 (11)0.0004 (9)−0.0023 (9)−0.0013 (9)
C30.0105 (12)0.0109 (13)0.0111 (11)−0.0005 (10)−0.0040 (9)−0.0021 (9)
C40.0100 (12)0.0089 (13)0.0110 (11)−0.0026 (9)−0.0010 (9)−0.0011 (9)
C50.0138 (13)0.0108 (13)0.0096 (11)−0.0019 (10)−0.0016 (9)−0.0020 (9)
C60.0107 (12)0.0085 (13)0.0104 (11)−0.0011 (9)−0.0021 (9)−0.0018 (9)
C70.0112 (13)0.0112 (13)0.0112 (11)−0.0022 (10)−0.0008 (9)−0.0034 (10)
O1W0.0186 (10)0.0179 (10)0.0109 (8)−0.0100 (8)−0.0046 (7)0.0010 (7)
O2W0.0307 (12)0.0316 (13)0.0181 (10)−0.0236 (10)0.0068 (9)−0.0110 (9)
O3W0.0261 (11)0.0217 (12)0.0211 (10)−0.0013 (9)−0.0091 (8)−0.0077 (9)
O4W0.0324 (13)0.0473 (16)0.0527 (15)0.0211 (11)−0.0306 (11)−0.0405 (13)

Geometric parameters (Å, °)

Sr1—O1W2.5240 (19)C1—C21.392 (3)
Sr1—O4W2.568 (2)C1—H1A0.9500
Sr1—O2i2.5816 (19)C2—C31.387 (3)
Sr1—O2W2.592 (2)C2—C61.505 (3)
Sr1—O1ii2.6063 (19)C3—C41.386 (3)
Sr1—O3W2.618 (2)C3—H3A0.9500
Sr1—O22.6223 (19)C4—C51.393 (3)
Sr1—O12.7395 (18)C4—C71.501 (3)
Sr1—C63.034 (3)C5—H5A0.9500
Sr1—Sr1i4.0677 (11)O1W—H1WA0.8258
Sr1—Sr1ii4.2965 (12)O1W—H1WB0.9233
O1—C61.259 (3)O2W—H2WA0.8569
O1—Sr1ii2.6063 (19)O2W—H2WB0.8650
O2—C61.257 (3)O3W—H3WA0.9275
O2—Sr1i2.5816 (19)O3W—H3WB0.8485
O3—C71.244 (3)O4W—H4WA0.8287
O4—C71.269 (3)O4W—H4WB0.7918
N1—C11.332 (3)Cg1—Cg1(N1/C1-C5)iii3.4604 (19)
N1—C51.335 (3)
O1W—Sr1—O4W96.37 (8)O1ii—Sr1—Sr1ii37.58 (4)
O1W—Sr1—O2i82.73 (6)O3W—Sr1—Sr1ii69.44 (5)
O4W—Sr1—O2i73.73 (6)O2—Sr1—Sr1ii84.10 (4)
O1W—Sr1—O2W72.85 (7)O1—Sr1—Sr1ii35.47 (4)
O4W—Sr1—O2W144.24 (7)C6—Sr1—Sr1ii59.79 (5)
O2i—Sr1—O2W71.15 (7)Sr1i—Sr1—Sr1ii115.28 (2)
O1W—Sr1—O1ii93.47 (6)C6—O1—Sr1ii160.12 (16)
O4W—Sr1—O1ii72.57 (6)C6—O1—Sr190.96 (15)
O2i—Sr1—O1ii145.42 (6)Sr1ii—O1—Sr1106.95 (6)
O2W—Sr1—O1ii140.38 (7)C6—O2—Sr1i141.33 (16)
O1W—Sr1—O3W85.06 (7)C6—O2—Sr196.51 (14)
O4W—Sr1—O3W141.51 (7)Sr1i—O2—Sr1102.83 (6)
O2i—Sr1—O3W143.96 (6)C1—N1—C5118.1 (2)
O2W—Sr1—O3W72.86 (7)N1—C1—C2123.1 (2)
O1ii—Sr1—O3W68.96 (6)N1—C1—H1A118.4
O1W—Sr1—O2141.03 (6)C2—C1—H1A118.4
O4W—Sr1—O2109.25 (7)C3—C2—C1117.8 (2)
O2i—Sr1—O277.17 (6)C3—C2—C6121.0 (2)
O2W—Sr1—O269.18 (6)C1—C2—C6121.1 (2)
O1ii—Sr1—O2121.59 (5)C4—C3—C2120.0 (2)
O3W—Sr1—O291.91 (6)C4—C3—H3A120.0
O1W—Sr1—O1161.19 (6)C2—C3—H3A120.0
O4W—Sr1—O192.07 (8)C3—C4—C5117.5 (2)
O2i—Sr1—O1115.84 (6)C3—C4—C7121.9 (2)
O2W—Sr1—O1109.03 (6)C5—C4—C7120.6 (2)
O1ii—Sr1—O173.05 (6)N1—C5—C4123.4 (2)
O3W—Sr1—O177.93 (6)N1—C5—H5A118.3
O2—Sr1—O148.73 (5)C4—C5—H5A118.3
O1W—Sr1—C6159.89 (7)O2—C6—O1123.3 (2)
O4W—Sr1—C6103.03 (8)O2—C6—C2118.2 (2)
O2i—Sr1—C697.56 (6)O1—C6—C2118.4 (2)
O2W—Sr1—C688.14 (7)O2—C6—Sr159.18 (12)
O1ii—Sr1—C697.29 (6)O1—C6—Sr164.53 (13)
O3W—Sr1—C683.05 (7)C2—C6—Sr1171.70 (17)
O2—Sr1—C624.31 (6)O3—C7—O4123.8 (2)
O1—Sr1—C624.51 (6)O3—C7—C4118.4 (2)
O1W—Sr1—Sr1i114.89 (5)O4—C7—C4117.7 (2)
O4W—Sr1—Sr1i91.99 (5)Sr1—O1W—H1WA138.3
O2i—Sr1—Sr1i38.94 (4)Sr1—O1W—H1WB121.7
O2W—Sr1—Sr1i64.27 (5)H1WA—O1W—H1WB97.4
O1ii—Sr1—Sr1i149.34 (4)Sr1—O2W—H2WA132.5
O3W—Sr1—Sr1i122.32 (5)Sr1—O2W—H2WB118.0
O2—Sr1—Sr1i38.23 (4)H2WA—O2W—H2WB107.9
O1—Sr1—Sr1i81.46 (4)Sr1—O3W—H3WA114.3
C6—Sr1—Sr1i59.74 (5)Sr1—O3W—H3WB106.3
O1W—Sr1—Sr1ii129.81 (4)H3WA—O3W—H3WB89.7
O4W—Sr1—Sr1ii80.87 (6)Sr1—O4W—H4WA138.5
O2i—Sr1—Sr1ii141.02 (4)Sr1—O4W—H4WB115.5
O2W—Sr1—Sr1ii132.47 (5)H4WA—O4W—H4WB105.6
O1W—Sr1—O1—C6−125.5 (2)C2—C3—C4—C50.0 (4)
O4W—Sr1—O1—C6117.69 (15)C2—C3—C4—C7178.2 (2)
O2i—Sr1—O1—C644.79 (16)C1—N1—C5—C40.0 (4)
O2W—Sr1—O1—C6−32.93 (16)C3—C4—C5—N1−0.1 (4)
O1ii—Sr1—O1—C6−171.24 (19)C7—C4—C5—N1−178.3 (2)
O3W—Sr1—O1—C6−99.82 (16)Sr1i—O2—C6—O1−112.8 (3)
O2—Sr1—O1—C63.66 (14)Sr1—O2—C6—O17.2 (3)
Sr1i—Sr1—O1—C625.99 (14)Sr1i—O2—C6—C269.0 (3)
Sr1ii—Sr1—O1—C6−171.24 (19)Sr1—O2—C6—C2−170.94 (19)
O1W—Sr1—O1—Sr1ii45.7 (2)Sr1i—O2—C6—Sr1−120.0 (2)
O4W—Sr1—O1—Sr1ii−71.07 (7)Sr1ii—O1—C6—O2−161.5 (4)
O2i—Sr1—O1—Sr1ii−143.98 (6)Sr1—O1—C6—O2−6.9 (3)
O2W—Sr1—O1—Sr1ii138.31 (7)Sr1ii—O1—C6—C216.7 (7)
O1ii—Sr1—O1—Sr1ii0.0Sr1—O1—C6—C2171.3 (2)
O3W—Sr1—O1—Sr1ii71.42 (7)Sr1ii—O1—C6—Sr1−154.6 (5)
O2—Sr1—O1—Sr1ii174.89 (11)C3—C2—C6—O2−171.8 (2)
C6—Sr1—O1—Sr1ii171.24 (19)C1—C2—C6—O210.9 (4)
Sr1i—Sr1—O1—Sr1ii−162.78 (6)C3—C2—C6—O19.9 (4)
O1W—Sr1—O2—C6152.90 (14)C1—C2—C6—O1−167.3 (2)
O4W—Sr1—O2—C6−78.87 (16)O1W—Sr1—C6—O2−56.4 (2)
O2i—Sr1—O2—C6−146.30 (18)O4W—Sr1—C6—O2108.05 (15)
O2W—Sr1—O2—C6139.24 (16)O2i—Sr1—C6—O233.08 (18)
O1ii—Sr1—O2—C62.05 (17)O2W—Sr1—C6—O2−37.63 (15)
O3W—Sr1—O2—C668.40 (15)O1ii—Sr1—C6—O2−178.24 (15)
O1—Sr1—O2—C6−3.68 (14)O3W—Sr1—C6—O2−110.59 (15)
Sr1i—Sr1—O2—C6−146.30 (18)O1—Sr1—C6—O2173.3 (2)
Sr1ii—Sr1—O2—C6−0.71 (14)Sr1i—Sr1—C6—O223.42 (13)
O1W—Sr1—O2—Sr1i−60.80 (11)Sr1ii—Sr1—C6—O2179.19 (16)
O4W—Sr1—O2—Sr1i67.43 (8)O1W—Sr1—C6—O1130.25 (19)
O2i—Sr1—O2—Sr1i0.0O4W—Sr1—C6—O1−65.27 (16)
O2W—Sr1—O2—Sr1i−74.46 (7)O2i—Sr1—C6—O1−140.24 (15)
O1ii—Sr1—O2—Sr1i148.35 (6)O2W—Sr1—C6—O1149.06 (15)
O3W—Sr1—O2—Sr1i−145.30 (7)O1ii—Sr1—C6—O18.45 (18)
O1—Sr1—O2—Sr1i142.62 (10)O3W—Sr1—C6—O176.10 (15)
C6—Sr1—O2—Sr1i146.30 (18)O2—Sr1—C6—O1−173.3 (2)
Sr1ii—Sr1—O2—Sr1i145.59 (6)Sr1i—Sr1—C6—O1−149.89 (16)
C5—N1—C1—C20.3 (4)Sr1ii—Sr1—C6—O15.87 (12)
N1—C1—C2—C3−0.4 (4)C3—C4—C7—O3−0.7 (4)
N1—C1—C2—C6177.0 (2)C5—C4—C7—O3177.5 (2)
C1—C2—C3—C40.2 (4)C3—C4—C7—O4−178.6 (2)
C6—C2—C3—C4−177.1 (2)C5—C4—C7—O4−0.4 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3ii0.831.922.744 (3)178
O1W—H1WB···O3iv0.921.852.754 (3)168
O2W—H2WA···O4iv0.861.902.747 (3)169
O2W—H2WB···O4iii0.861.982.816 (3)162
O3W—H3WA···O4v0.931.952.863 (3)168
O3W—H3WB···O4Wii0.852.313.159 (4)175
O4W—H4WA···N1vi0.831.922.739 (4)169
O4W—H4WB···O4vii0.792.423.192 (4)164
C3—H3A···O1Wii0.952.403.324 (4)164

Symmetry codes: (ii) −x, −y+1, −z+1; (iv) x+1, y+1, z−1; (iii) −x, −y+1, −z+2; (v) x, y+1, z−1; (vi) x, y, z−1; (vii) x+1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2030).

References

  • Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007). Acta Cryst. E63, m1710–m1711.
  • Aghabozorg, H., Ghadermazi, M. & Nemati, A. (2006). Anal. Sci.22, x233–x234.
  • Aghabozorg, H., Nemati, A., Derikvand, Z., Ghadermazi, M. & Daneshvar, S. (2008). Acta Cryst. E64, m375. [PMC free article] [PubMed]
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Starosta, W., Ptasiewicz-Bak, H. & Leciejewicz, J. (2002a). J. Coord. Chem.55, 1–9.
  • Starosta, W., Ptasiewicz-Bak, H. & Leciejewicz, J. (2002b). J. Coord. Chem.55, 985–990.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography