PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o357.
Published online 2008 January 4. doi:  10.1107/S1600536807067712
PMCID: PMC2960443

N-(2-Chloro-2-nitro-1-phenyl­prop­yl)-4-methyl­benzene­sulfonamide

Abstract

In the title compound, C16H17ClN2O4S, the dihedral angle between the phenyl and benzene rings is 19.4 (2)°. The crystal packing is stabilized by inter­molecular N—H(...)O hydrogen bonds, as well as by intra- and inter­molecular C—H(...)O hydrogen bonds.

Related literature

For general background, see Kemp (1991 [triangle]); Qui & Silverman (2000 [triangle]); Orlek & Stemp (1991 [triangle]), Han et al. (2007 [triangle]); Li et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o357-scheme1.jpg

Experimental

Crystal data

  • C16H17ClN2O4S
  • M r = 368.83
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o357-efi1.jpg
  • a = 7.8254 (8) Å
  • b = 19.610 (2) Å
  • c = 22.533 (3) Å
  • V = 3457.8 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 291 (2) K
  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.901, T max = 0.921
  • 17527 measured reflections
  • 3396 independent reflections
  • 2467 reflections with I > 2σ(I)
  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.125
  • S = 1.01
  • 3396 reflections
  • 222 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067712/at2518sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067712/at2518Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the 863 High Technology Program (to YP). The research funds for YP from the Qing-Lan Program of Jiangsu Province and the Kua-Shi-Ji Program of the Education Ministry of China are also acknowledged.

supplementary crystallographic information

Comment

Since the vicinal haloamines are important building blocks in organic and medicinal chemistry, many attentions are attracted to the aminohalogenation reactions of functionalized alkenes (Kemp, 1991; Qui & Silverman, 2000). In recent years, many new aminohalogenation processes of several kinds of functionalized alkenes have been developed (Han et al., 2007), with the different nitrogen/halogen sources in the presence of metallic catalysts (Li et al., 2007). However, the aminohalogenation reactions of 2-nitro-propenyl benzene was not been well documented. Recently, we synthesized the title compound (I) from 2-nitro-propenyl benzene. As part of this study, we have undertaken the X-ray crystallographic analysis of (I) in order to elucidate the conformation and configuration of this product.

The bond lengths and angles in (I) are in good agree with expected values (Allen et al., 1987). The dihedral angle between the phenyl and benzene rings is 19.4 (2)°. The packing is stabilized by intermolecular N—H···O as well as intra and intermolecular C—H···O interactions in the crystal structure (Table 1).

Experimental

N-cChlorosuccinimide (400 mg, 3.0 mmol) was added into a solution of MnSO4 (30.2 mg, 0.20 mmol), 1-benzyl-2-nitro-propene (163 mg, 1 mmol), tolunesulfonamide (513 mg, 3 mmol) and 4 Å molecular sieves (500 mg) in CH2Cl2 (5.0 ml) with nitrogen atmosphere. The resulting mixture was stirred at room temperature for 48 h. Reaction was quenched with saturated aqueous Na2S2O3 solution. The solid precipitates were filtered off and washed with ethyl acetate (3 × 10 ml). The organic solution was concentrated and then purified via flash chromatography (ethyl acetate/ hexane, 1:4, v/v) provide the title compound (I) as white solid (276 mg) in yield of 75%. A colourless crystal of (I) for X-ray analysis was obtained by slow evaporation from ethyl acetate solution system.

Refinement

The H atom bonded to N was located in a difference map and refined with restraint of N—H = 0.89 (3) Å, and with Uiso(H) = 1.2Ueq(N). Other H atoms were geometrically placed and were treated as riding, with C—H distances of 0.93, 0.96 and 0.98 Å for aromatic, methyl and methine H atoms, respectively, and with Uiso(H) = 1.2Ueq(aromatic and methyne C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Crystal data

C16H17ClN2O4SDx = 1.417 Mg m3
Mr = 368.83Melting point: 423.2 K
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7468 reflections
a = 7.8254 (8) Åθ = 2.3–27.9º
b = 19.610 (2) ŵ = 0.36 mm1
c = 22.533 (3) ÅT = 291 (2) K
V = 3457.8 (7) Å3Block, colourless
Z = 80.30 × 0.26 × 0.24 mm
F000 = 1536

Data collection

Bruker SMART APEX CCD area-detector diffractometer3396 independent reflections
Radiation source: sealed tube2467 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.070
T = 291(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −9→8
Tmin = 0.901, Tmax = 0.921k = −24→24
17527 measured reflectionsl = −16→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125  w = 1/[σ2(Fo2) + (0.06P)2 + 0.58P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3396 reflectionsΔρmax = 0.28 e Å3
222 parametersΔρmin = −0.26 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7916 (4)0.10320 (17)0.61740 (13)0.0374 (7)
H1A0.77090.10300.65940.056*
H1B0.86060.14200.60720.056*
H1C0.85030.06210.60640.056*
C20.6185 (4)0.10723 (16)0.58376 (13)0.0333 (7)
C30.5059 (4)0.16923 (14)0.59888 (13)0.0292 (6)
H30.39950.16450.57630.035*
C40.5853 (3)0.23727 (15)0.58138 (13)0.0293 (6)
C50.5405 (4)0.26704 (17)0.52790 (13)0.0362 (7)
H50.46510.24450.50280.043*
C60.6055 (4)0.32954 (17)0.51103 (14)0.0415 (8)
H60.57650.34840.47450.050*
C70.7156 (4)0.36407 (18)0.54968 (15)0.0437 (8)
H70.75700.40700.53960.052*
C80.7623 (4)0.33466 (18)0.60226 (15)0.0444 (8)
H80.83810.35720.62730.053*
C90.6972 (4)0.27113 (17)0.61859 (14)0.0414 (8)
H90.72900.25160.65450.050*
C100.3185 (3)0.28495 (15)0.69070 (12)0.0314 (6)
C110.2653 (4)0.32776 (18)0.64579 (14)0.0402 (7)
H110.20850.30990.61310.048*
C120.2959 (5)0.39679 (18)0.64904 (15)0.0465 (8)
H120.26010.42520.61840.056*
C130.3804 (4)0.42454 (18)0.69822 (14)0.0419 (8)
C140.4350 (4)0.38054 (17)0.74268 (15)0.0423 (8)
H140.49390.39800.77510.051*
C150.4037 (4)0.31171 (16)0.73966 (13)0.0349 (7)
H150.43920.28310.77020.042*
C160.4064 (4)0.49975 (18)0.70326 (17)0.0491 (9)
H16A0.32410.51840.73040.074*
H16B0.39220.52040.66500.074*
H16C0.51960.50870.71770.074*
Cl10.65350 (9)0.10276 (4)0.50665 (3)0.03580 (19)
N10.5083 (4)0.04372 (13)0.59707 (12)0.0407 (6)
N20.4620 (3)0.16217 (13)0.66251 (11)0.0334 (6)
H2A0.547 (4)0.1794 (17)0.6841 (15)0.040*
O10.1557 (3)0.18367 (12)0.64347 (10)0.0439 (6)
O20.2635 (3)0.17162 (12)0.74582 (9)0.0432 (6)
O30.3667 (3)0.04155 (12)0.57591 (12)0.0547 (7)
O40.5674 (3)−0.00057 (13)0.62846 (12)0.0595 (7)
S10.28433 (9)0.19677 (4)0.68662 (3)0.03081 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0406 (16)0.0483 (18)0.0233 (14)0.0236 (14)−0.0020 (12)−0.0033 (14)
C20.0365 (16)0.0373 (16)0.0261 (14)0.0020 (13)0.0056 (12)−0.0015 (13)
C30.0296 (15)0.0309 (14)0.0270 (14)−0.0002 (12)0.0055 (11)−0.0002 (12)
C40.0267 (14)0.0322 (15)0.0290 (15)−0.0027 (11)0.0033 (12)−0.0024 (12)
C50.0344 (15)0.0448 (17)0.0295 (15)−0.0005 (14)−0.0042 (12)0.0001 (13)
C60.056 (2)0.0446 (19)0.0242 (16)0.0022 (15)0.0026 (14)0.0134 (14)
C70.0534 (19)0.0383 (18)0.0393 (19)−0.0083 (15)0.0079 (15)0.0100 (15)
C80.0513 (19)0.0471 (19)0.0349 (18)−0.0214 (16)0.0037 (15)0.0031 (15)
C90.0496 (18)0.0467 (19)0.0279 (15)−0.0154 (15)−0.0060 (14)0.0084 (14)
C100.0265 (14)0.0402 (17)0.0275 (15)0.0008 (12)0.0057 (11)0.0011 (12)
C110.0452 (17)0.0461 (19)0.0293 (16)0.0124 (14)−0.0042 (14)0.0062 (14)
C120.059 (2)0.0433 (19)0.0368 (18)0.0120 (16)−0.0016 (16)0.0137 (16)
C130.0474 (19)0.0432 (18)0.0350 (17)−0.0008 (14)0.0099 (14)0.0068 (15)
C140.0435 (18)0.0471 (19)0.0363 (17)−0.0077 (14)−0.0042 (14)−0.0025 (15)
C150.0373 (15)0.0392 (16)0.0281 (15)−0.0009 (13)−0.0026 (12)0.0021 (13)
C160.0394 (17)0.050 (2)0.058 (2)−0.0181 (15)0.0056 (17)0.0087 (18)
Cl10.0403 (4)0.0396 (4)0.0275 (4)0.0017 (3)0.0128 (3)−0.0108 (3)
N10.0507 (17)0.0366 (15)0.0347 (15)−0.0014 (13)0.0048 (13)−0.0007 (12)
N20.0326 (13)0.0325 (14)0.0351 (15)0.0000 (10)0.0028 (11)−0.0005 (11)
O10.0323 (10)0.0607 (15)0.0387 (12)−0.0070 (10)−0.0006 (10)−0.0059 (11)
O20.0565 (14)0.0451 (13)0.0281 (11)−0.0041 (10)0.0182 (11)0.0042 (10)
O30.0564 (15)0.0482 (14)0.0597 (17)−0.0259 (12)0.0007 (13)−0.0081 (12)
O40.0644 (16)0.0474 (15)0.0667 (18)0.0107 (12)0.0152 (14)0.0303 (14)
S10.0299 (3)0.0364 (4)0.0261 (4)−0.0028 (3)0.0059 (3)0.0004 (3)

Geometric parameters (Å, °)

C1—C21.555 (4)C10—C111.379 (4)
C1—H1A0.9600C10—C151.392 (4)
C1—H1B0.9600C10—S11.752 (3)
C1—H1C0.9600C11—C121.377 (5)
C2—C31.539 (4)C11—H110.9300
C2—N11.544 (4)C12—C131.400 (5)
C2—Cl11.761 (3)C12—H120.9300
C3—N21.481 (4)C13—C141.390 (5)
C3—C41.524 (4)C13—C161.493 (5)
C3—H30.9800C14—C151.373 (4)
C4—C91.382 (4)C14—H140.9300
C4—C51.384 (4)C15—H150.9300
C5—C61.380 (4)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.400 (5)C16—H16C0.9600
C6—H60.9300N1—O31.207 (3)
C7—C81.367 (5)N1—O41.212 (3)
C7—H70.9300N2—S11.639 (3)
C8—C91.395 (4)N2—H2A0.89 (3)
C8—H80.9300O1—S11.423 (2)
C9—H90.9300O2—S11.432 (2)
C2—C1—H1A109.5C11—C10—C15119.8 (3)
C2—C1—H1B109.5C11—C10—S1121.1 (2)
H1A—C1—H1B109.5C15—C10—S1119.1 (2)
C2—C1—H1C109.5C12—C11—C10120.5 (3)
H1A—C1—H1C109.5C12—C11—H11119.8
H1B—C1—H1C109.5C10—C11—H11119.8
C3—C2—N1105.9 (2)C11—C12—C13120.4 (3)
C3—C2—C1115.5 (2)C11—C12—H12119.8
N1—C2—C1110.5 (2)C13—C12—H12119.8
C3—C2—Cl1110.3 (2)C14—C13—C12118.3 (3)
N1—C2—Cl1103.78 (19)C14—C13—C16121.1 (3)
C1—C2—Cl1110.1 (2)C12—C13—C16120.6 (3)
N2—C3—C4115.3 (2)C15—C14—C13121.3 (3)
N2—C3—C2105.9 (2)C15—C14—H14119.3
C4—C3—C2113.6 (2)C13—C14—H14119.3
N2—C3—H3107.2C14—C15—C10119.7 (3)
C4—C3—H3107.2C14—C15—H15120.2
C2—C3—H3107.2C10—C15—H15120.2
C9—C4—C5119.1 (3)C13—C16—H16A109.5
C9—C4—C3121.5 (3)C13—C16—H16B109.5
C5—C4—C3119.4 (3)H16A—C16—H16B109.5
C6—C5—C4121.4 (3)C13—C16—H16C109.5
C6—C5—H5119.3H16A—C16—H16C109.5
C4—C5—H5119.3H16B—C16—H16C109.5
C5—C6—C7119.0 (3)O3—N1—O4123.8 (3)
C5—C6—H6120.5O3—N1—C2117.7 (3)
C7—C6—H6120.5O4—N1—C2118.6 (3)
C8—C7—C6120.0 (3)C3—N2—S1118.6 (2)
C8—C7—H7120.0C3—N2—H2A109 (2)
C6—C7—H7120.0S1—N2—H2A107 (2)
C7—C8—C9120.5 (3)O1—S1—O2119.59 (14)
C7—C8—H8119.8O1—S1—N2107.37 (14)
C9—C8—H8119.8O2—S1—N2105.25 (14)
C4—C9—C8120.0 (3)O1—S1—C10108.79 (14)
C4—C9—H9120.0O2—S1—C10107.97 (14)
C8—C9—H9120.0N2—S1—C10107.24 (13)
N1—C2—C3—N259.6 (3)C12—C13—C14—C15−1.7 (5)
C1—C2—C3—N2−63.2 (3)C16—C13—C14—C15176.7 (3)
Cl1—C2—C3—N2171.28 (19)C13—C14—C15—C101.2 (5)
N1—C2—C3—C4−172.9 (2)C11—C10—C15—C14−0.4 (4)
C1—C2—C3—C464.4 (3)S1—C10—C15—C14178.4 (2)
Cl1—C2—C3—C4−61.2 (3)C3—C2—N1—O350.9 (3)
N2—C3—C4—C936.7 (4)C1—C2—N1—O3176.7 (3)
C2—C3—C4—C9−85.7 (3)Cl1—C2—N1—O3−65.3 (3)
N2—C3—C4—C5−141.2 (3)C3—C2—N1—O4−128.4 (3)
C2—C3—C4—C596.3 (3)C1—C2—N1—O4−2.5 (4)
C9—C4—C5—C60.2 (5)Cl1—C2—N1—O4115.5 (3)
C3—C4—C5—C6178.1 (3)C4—C3—N2—S180.2 (3)
C4—C5—C6—C7−1.6 (5)C2—C3—N2—S1−153.3 (2)
C5—C6—C7—C82.4 (5)C3—N2—S1—O141.9 (3)
C6—C7—C8—C9−1.8 (5)C3—N2—S1—O2170.3 (2)
C5—C4—C9—C80.5 (5)C3—N2—S1—C10−74.9 (2)
C3—C4—C9—C8−177.4 (3)C11—C10—S1—O1−18.0 (3)
C7—C8—C9—C40.4 (5)C15—C10—S1—O1163.2 (2)
C15—C10—C11—C120.0 (5)C11—C10—S1—O2−149.2 (2)
S1—C10—C11—C12−178.8 (3)C15—C10—S1—O232.0 (3)
C10—C11—C12—C13−0.4 (5)C11—C10—S1—N297.8 (3)
C11—C12—C13—C141.2 (5)C15—C10—S1—N2−80.9 (2)
C11—C12—C13—C16−177.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O10.982.462.933 (4)109
C3—H3···O30.982.422.779 (4)101
C1—H1A···O2i0.962.523.369 (4)147
C1—H1B···O1ii0.962.583.310 (4)133
N2—H2A···O2i0.89 (2)2.32 (3)3.141 (3)153

Symmetry codes: (i) x+1/2, y, −z+3/2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2518).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Han, J., Zhi, S., Wang, L., Pan, Y. & Li, G. (2007). Eur. J. Org. Chem. pp. 1332–1337.
  • Kemp, J. E. G. (1991). Comprehensive Organic Synthesis, Vol. 3, edited by B. M. Trost & I. Fleming, pp. 469–513. Oxford: Pergamon Press.
  • Li, G., Saibabu, K. S. R. S. & Timmons, C. (2007). Eur. J. Org. Chem. pp. 2745–2758.
  • Orlek, B. S. & Stemp, G. (1991). Tetrahedron Lett.32, 4045–4048.
  • Qui, J. & Silverman, R. B. (2000). J. Med. Chem.43, 706–720. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography