PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o473.
Published online 2008 January 18. doi:  10.1107/S1600536808001128
PMCID: PMC2960442

(S)-2-Amino-1-(pyrrolidinium-2-ylmeth­yl)pyridinium dibromide

Abstract

In the title compound, C10H17N3 2+·2Br, the pyrrolidinium ring displays an envelope conformation, with the flap N atom lying 0.564 (6) Å from the mean plane of the remaining four C atoms. The attached methyl­ene C atom, which connects the pyrrolidinium ring and the 2-amino­pyridine group, is displaced from the plane of the four pyrrolidinium C atoms by 0.811 (8) Å in the same direction as the pyrrolidinium N atom. The amine N lies on the opposite side of this plane.

Related literature

The synthesis of (S)-(+)-2-bromo­methyl­pyrrolidine hydro­bromide is described by Xu et al. (2006 [triangle]). For related literature, see: Ishii et al. (2004 [triangle]); Larson (1970 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o473-scheme1.jpg

Experimental

Crystal data

  • C10H17N3 2+·2Br
  • M r = 339.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o473-efi1.jpg
  • a = 10.5509 (5) Å
  • b = 6.1755 (3) Å
  • c = 10.8474 (6) Å
  • β = 107.4830 (14)°
  • V = 674.14 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.01 mm−1
  • T = 296 (1) K
  • 0.37 × 0.32 × 0.13 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.110, T max = 0.458
  • 6601 measured reflections
  • 2681 independent reflections
  • 1943 reflections with F 2 > 2σ(F 2)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.094
  • S = 1.01
  • 2681 reflections
  • 138 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.61 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 1013 Friedel pairs
  • Flack parameter: 0.002 (5)

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001128/cs2067sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001128/cs2067Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for the help of Professor Jian-Ming Gu of Zhejiang University.

supplementary crystallographic information

Comment

Proline and its derivatives have been extensively studied due to their abilities to catalyze a wide range of reactions as organocatalysts in recent years (Ishii et al., 2004; Xu et al., 2006). The title compound, which could be readily synthesized from commercially available L-proline and 2-aminopyridine, can act as organocatalyst in the Michael addition of ketones to nitrostyrenes. These reactions afford the desired Michael adducts in good yields and moderate enantioselectivities. The title salt (S)-2-amino-1-(pyrrolidinium-2-ylmethyl)-pyridinium dibromide crystal structure (Fig. 1) is built of pyrrolidinium cations and bromide anions. The pyrrolidinium ring displays a fair half-chair conformation, with the flap atom N1 lying 0.564 (6) Å from the mean plane of C1/C2/C3/C4. The methylene C5 atom, which connects the pyrrolidinium ring and the 2-aminopyridine group, is displaced from the plane of four pyrrolidinium carbons by 0.811 (8) Å in the same direction as the N1 atom. The atom N3 of the amino group of pyrrolidinium and the atom N1 are on the opposite sides of the mean plane of C1/C2/C3/C4.

Experimental

The title compound was synthesized by treating 2-aminopyridine (0.94 g,10 mmol) with (S)-(+)-2-bromomethylpyrrolidine hydrobromide (2.50 g,10 mmol) in MeCN (30 ml) under stirring at 353 K for 24 h (yield 92%). The compound (S)-(+)-2-bromomethylpyrrolidine hydrobromide was obtained from commercially available L-proline by reduction with NaBH4 and subsequent bromination with PBr3 (Xu et al., 2006). Suitable crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

H atoms were placed in calculated position with N—H=0.86 Å, C—H=0.98 Å(sp), C—H=0.97 Å(sp2), C—H=0.93 Å(aromatic). All H atoms included in the final cycles of refinement as riding mode, with Uiso(H)=1.2Ueq of the carrier atoms.

Figures

Fig. 1.
The asymmetric unit of the crystal structure of the title compound with the atomic labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.

Crystal data

C10H17N32+·2BrF000 = 336.00
Mr = 339.07Dx = 1.670 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71075 Å
Hall symbol: P 2ybCell parameters from 5483 reflections
a = 10.5509 (5) Åθ = 3.2–27.5º
b = 6.1755 (3) ŵ = 6.01 mm1
c = 10.8474 (6) ÅT = 296 (1) K
β = 107.4830 (14)ºPlatelet, colorless
V = 674.14 (6) Å30.37 × 0.32 × 0.13 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer1943 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.052
ω scansθmax = 27.5º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −13→13
Tmin = 0.110, Tmax = 0.458k = −7→8
6601 measured reflectionsl = −14→14
2681 independent reflections

Refinement

Refinement on F2(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.034Δρmax = 0.41 e Å3
wR(F2) = 0.094Δρmin = −0.61 e Å3
S = 1.01Extinction correction: Larson (1970), equation 22
2681 reflectionsExtinction coefficient: 48 (6)
138 parametersAbsolute structure: Flack (1983), 1013 Friedel pairs
H-atom parameters constrainedFlack parameter: 0.002 (5)
  w = 1/[0.9800σ(Fo2)]/(4Fo2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.12426 (6)0.7373 (2)0.07481 (6)0.0544 (2)
Br20.36075 (6)0.4571 (2)0.62553 (6)0.0481 (2)
N10.2124 (4)0.2325 (8)0.0528 (4)0.0394 (13)
N20.2014 (4)0.1711 (7)0.3238 (4)0.0383 (14)
N30.3461 (4)−0.1049 (8)0.4252 (5)0.0504 (17)
C10.3320 (5)0.2156 (10)0.1669 (5)0.0373 (16)
C20.4356 (6)0.3574 (10)0.1293 (7)0.050 (2)
C30.3902 (8)0.3654 (13)−0.0157 (8)0.072 (3)
C40.2652 (7)0.2334 (12)−0.0600 (6)0.058 (2)
C50.3056 (6)0.2905 (8)0.2915 (6)0.0396 (19)
C60.0744 (6)0.2588 (11)0.2846 (6)0.0473 (19)
C7−0.0286 (6)0.1613 (11)0.3117 (7)0.058 (2)
C8−0.0044 (5)−0.0355 (14)0.3828 (6)0.054 (2)
C90.1193 (6)−0.1204 (10)0.4205 (6)0.048 (2)
C100.2260 (5)−0.0171 (10)0.3902 (5)0.0399 (16)
H50.36280.06500.17700.045*
H60.05990.38810.23840.057*
H7−0.11330.22140.28450.070*
H8−0.0734−0.10560.40330.065*
H90.1347−0.24910.46710.057*
H210.43780.50190.16500.060*
H220.52320.29270.16050.060*
H310.37250.5138−0.04500.087*
H320.45780.3046−0.04940.087*
H410.28470.0872−0.08170.070*
H420.20220.2998−0.13460.070*
H510.38710.27430.36220.048*
H520.28040.44200.28200.048*
H1110.16980.35020.05550.047*
H1120.16070.12340.04910.047*
H3010.4104−0.04120.40650.061*
H3020.3597−0.22570.46660.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0568 (4)0.0313 (3)0.0617 (4)0.0003 (3)−0.0024 (3)0.0000 (3)
Br20.0345 (3)0.0652 (4)0.0452 (4)−0.0024 (3)0.0130 (2)0.0014 (3)
N10.035 (2)0.038 (2)0.044 (3)0.003 (2)0.011 (2)0.000 (2)
N20.035 (2)0.047 (3)0.036 (3)0.005 (2)0.014 (2)0.000 (2)
N30.031 (2)0.060 (3)0.063 (4)0.008 (2)0.017 (2)0.015 (2)
C10.030 (2)0.042 (3)0.043 (3)0.001 (2)0.015 (2)0.008 (2)
C20.047 (4)0.057 (4)0.048 (4)−0.004 (3)0.017 (3)0.007 (3)
C30.070 (5)0.088 (6)0.065 (6)0.003 (4)0.030 (4)0.016 (4)
C40.075 (4)0.071 (4)0.032 (3)0.012 (5)0.022 (3)−0.003 (3)
C50.044 (3)0.040 (4)0.035 (3)−0.002 (2)0.013 (3)0.002 (2)
C60.050 (3)0.053 (3)0.039 (3)0.009 (3)0.013 (3)0.006 (3)
C70.034 (3)0.084 (5)0.057 (4)0.004 (3)0.015 (3)−0.004 (3)
C80.029 (2)0.088 (5)0.052 (4)0.006 (4)0.023 (2)−0.001 (4)
C90.041 (3)0.064 (5)0.042 (4)−0.004 (3)0.018 (3)0.004 (2)
C100.031 (2)0.047 (3)0.039 (3)0.003 (3)0.008 (2)−0.003 (3)

Geometric parameters (Å, °)

N1—C11.483 (6)N3—H3010.860
N1—C41.490 (9)N3—H3020.860
N2—C51.451 (8)C1—H50.980
N2—C61.388 (8)C2—H210.970
N2—C101.351 (7)C2—H220.970
N3—C101.325 (7)C3—H310.970
C1—C21.547 (9)C3—H320.970
C1—C51.532 (9)C4—H410.970
C2—C31.501 (9)C4—H420.970
C3—C41.501 (9)C5—H510.970
C6—C71.350 (9)C5—H520.970
C7—C81.421 (9)C6—H60.930
C8—C91.351 (9)C7—H70.930
C9—C101.415 (9)C8—H80.930
N1—H1110.860C9—H90.930
N1—H1120.860
C1—N1—C4104.6 (4)C1—C2—H21110.5
C5—N2—C6117.3 (4)C1—C2—H22110.5
C5—N2—C10121.8 (4)C3—C2—H21110.5
C6—N2—C10120.8 (5)C3—C2—H22110.5
N1—C1—C2103.4 (4)H21—C2—H22109.5
N1—C1—C5112.4 (4)C2—C3—H31110.1
C2—C1—C5113.1 (4)C2—C3—H32110.1
C1—C2—C3105.5 (5)C4—C3—H31110.1
C2—C3—C4106.9 (7)C4—C3—H32110.1
N1—C4—C3104.4 (5)H31—C3—H32109.5
N2—C5—C1114.3 (4)N1—C4—H41110.7
N2—C6—C7121.7 (6)N1—C4—H42110.7
C6—C7—C8118.3 (6)C3—C4—H41110.7
C7—C8—C9119.7 (6)C3—C4—H42110.7
C8—C9—C10121.2 (6)H41—C4—H42109.5
N2—C10—N3121.3 (5)N2—C5—H51108.3
N2—C10—C9118.2 (5)N2—C5—H52108.3
N3—C10—C9120.5 (5)C1—C5—H51108.3
C1—N1—H111110.7C1—C5—H52108.3
C1—N1—H112110.7H51—C5—H52109.5
C4—N1—H111110.7N2—C6—H6119.2
C4—N1—H112110.7C7—C6—H6119.2
H111—N1—H112109.5C6—C7—H7120.8
C10—N3—H301120.0C8—C7—H7120.8
C10—N3—H302120.0C7—C8—H8120.1
H301—N3—H302120.0C9—C8—H8120.1
N1—C1—H5109.3C8—C9—H9119.4
C2—C1—H5109.3C10—C9—H9119.4
C5—C1—H5109.3
C1—N1—C4—C3−38.1 (6)N1—C1—C2—C3−23.1 (6)
C4—N1—C1—C237.7 (6)N1—C1—C5—N258.8 (6)
C4—N1—C1—C5159.9 (5)C2—C1—C5—N2175.4 (4)
C5—N2—C6—C7−179.0 (6)C5—C1—C2—C3−144.9 (5)
C6—N2—C5—C1−95.2 (6)C1—C2—C3—C40.0 (6)
C5—N2—C10—N3−2.4 (8)C2—C3—C4—N123.0 (7)
C5—N2—C10—C9178.4 (5)N2—C6—C7—C80.3 (8)
C10—N2—C5—C185.4 (6)C6—C7—C8—C9−0.4 (9)
C6—N2—C10—N3178.2 (5)C7—C8—C9—C10−0.1 (8)
C6—N2—C10—C9−0.9 (8)C8—C9—C10—N20.8 (9)
C10—N2—C6—C70.4 (8)C8—C9—C10—N3−178.4 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2067).

References

  • Betteridge, P. W., Carruthers, J. R., Cooper, R. L., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Ishii, T., Fujioka, S., Sekiguchi, Y. & Kotsuki, H. (2004). J. Am. Chem. Soc.126, 9558–9559. [PubMed]
  • Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Version 3.7. Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, D. Q., Luo, S. P., Yue, H. D., Wang, L. P., Liu, Y. K. & Xu, Z. Y. (2006). Synlett, 16, 2569–2572.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography