PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o382.
Published online 2008 January 9. doi:  10.1107/S160053680706881X
PMCID: PMC2960440

2,2-Dichloro-N-(3-nitro­phen­yl)acetamide

Abstract

The conformation of the N—H bond in the structure of the title compound (3NPDCA), C8H6Cl2N2O3, is anti to the meta-nitro group, similar to that in the structures of 2-chloro-N-(3-nitro­phen­yl)acetamide (3NPCA) and 2,2,2-trichloro-N-(3-nitro­phen­yl)acetamide (3NPTCA), and the meta-chloro group in 2,2-dichloro-N-(3-chloro­phen­yl)acetamide (3CPDCA). The geometric parameters of 3NPDCA are similar to those of 2,2-dichloro-N-phenyl­acetamide, 3CPDCA, 3NPCA, 3NPTCA and other acetanilides. Inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains running along the b axis.

Related literature

For related literature, see: Gowda & Weiss (1994 [triangle]); Gowda et al. (2000 [triangle], 2006 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o382-scheme1.jpg

Experimental

Crystal data

  • C8H6Cl2N2O3
  • M r = 249.05
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o382-efi2.jpg
  • a = 9.6092 (6) Å
  • b = 10.6487 (7) Å
  • c = 19.868 (1) Å
  • V = 2033.0 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.63 mm−1
  • T = 299 (2) K
  • 0.60 × 0.52 × 0.24 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Detector
  • Absorption correction: multi-scan (SCALE3 ABSPACK; Oxford Diffraction, 2007 [triangle]) T min = 0.706, T max = 0.865
  • 11267 measured reflections
  • 2072 independent reflections
  • 1614 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.098
  • S = 1.10
  • 2072 reflections
  • 155 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXS97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706881X/dn2307sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706881X/dn2307Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the effect of ring and side chain substitutions on the solid state structures of acetanilides (Gowda et al., 2000, 2006, 2007), in the present work, the crystal structure of 2,2-dichloro-N- (3-nitrophenyl)-acetamide (3NPDCA) has been determined to explore the effects of polar substituent groups on the structures of N-aromatic amides. The conformation of the N—H bond in the structure of 3NPDCA (Fig.1) is anti to the meta nitro group, similar to that in the structure of 2-chloro-N-(3-nitrophenyl)-acetamide (3NPCA) (Gowda et al., 2007) and 2,2,2-trichloro-N-(3-nitrophenyl)-acetamide (3NPTCA)(Gowda et al., 2000) and meta chloro group in 2,2-dichloro-N-(3-chlorophenyl)-acetamide (3CPDCA)(Gowda et al., 2006). The geometric parameters in 3NPDCA are similar to those of 2,2-dichloro-N-(phenyl)-acetamide, 3CPDCA, 3NPCA, 3NPTCA and other acetanilides. The intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains running along the b axis (Fig. 2).

Experimental

The title compound was prepared similar to the literature method (Gowda and Weiss, 1994). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NQR spectra (Gowda and Weiss, 1994). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms were located in difference map with C—H = 0.89 (3)–0.96 (3) Å and N—H distance was restrained to 0.86 (2) %A. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view showing the hydrogen bonding as dashed lines.H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x - 1/2, 1/2 - y,1 - z]

Crystal data

C8H6Cl2N2O3F000 = 1008
Mr = 249.05Dx = 1.627 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4893 reflections
a = 9.6092 (6) Åθ = 2.8–27.8º
b = 10.6487 (7) ŵ = 0.63 mm1
c = 19.868 (1) ÅT = 299 (2) K
V = 2033.0 (2) Å3Prism, yellow
Z = 80.60 × 0.52 × 0.24 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Detector2072 independent reflections
Radiation source: fine-focus sealed tube1614 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
T = 299(2) Kθmax = 26.4º
Rotation method data acquisition using ω and [var phi] scans.θmin = 3.0º
Absorption correction: multi-scan(SCALE3 ABSPACK; Oxford Diffraction, 2007)h = −12→11
Tmin = 0.706, Tmax = 0.865k = −11→13
11267 measured reflectionsl = −24→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098  w = 1/[σ2(Fo2) + (0.0385P)2 + 1.4567P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.044
2072 reflectionsΔρmax = 0.35 e Å3
155 parametersΔρmin = −0.36 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0230 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.03253 (19)0.14098 (18)0.60262 (10)0.0344 (4)
C20.1408 (2)0.05696 (19)0.61012 (11)0.0365 (4)
H20.204 (2)0.043 (2)0.5757 (12)0.044*
C30.1543 (2)−0.00244 (19)0.67144 (11)0.0380 (5)
C40.0653 (2)0.0166 (2)0.72466 (11)0.0453 (5)
H40.075 (3)−0.025 (2)0.7632 (14)0.054*
C5−0.0418 (2)0.1009 (2)0.71576 (12)0.0490 (6)
H5−0.103 (3)0.122 (2)0.7521 (14)0.059*
C6−0.0584 (2)0.1632 (2)0.65542 (11)0.0426 (5)
H6−0.131 (3)0.220 (2)0.6503 (13)0.051*
C70.1102 (2)0.24984 (19)0.50064 (11)0.0357 (4)
C80.0552 (2)0.3297 (2)0.44287 (11)0.0398 (5)
H8−0.034 (3)0.352 (2)0.4488 (11)0.048*
N10.01034 (17)0.20745 (17)0.54149 (9)0.0381 (4)
H1N−0.0711 (18)0.227 (2)0.5320 (12)0.046*
N20.2700 (2)−0.09083 (18)0.67926 (10)0.0491 (5)
O10.23372 (15)0.22854 (16)0.50684 (9)0.0532 (5)
O20.3669 (2)−0.08426 (19)0.63930 (10)0.0664 (5)
O30.2672 (2)−0.16436 (19)0.72637 (10)0.0759 (6)
Cl10.15452 (6)0.46874 (5)0.43763 (3)0.0529 (2)
Cl20.06927 (8)0.24208 (7)0.36778 (3)0.0661 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0270 (9)0.0403 (10)0.0360 (10)−0.0056 (8)−0.0003 (8)0.0025 (8)
C20.0334 (10)0.0388 (10)0.0374 (10)−0.0034 (8)−0.0001 (8)0.0008 (8)
C30.0363 (10)0.0346 (10)0.0430 (11)−0.0033 (8)−0.0046 (9)0.0017 (8)
C40.0494 (13)0.0483 (12)0.0382 (11)−0.0071 (10)−0.0014 (10)0.0065 (10)
C50.0460 (13)0.0583 (14)0.0428 (12)−0.0043 (11)0.0103 (10)−0.0006 (10)
C60.0311 (10)0.0487 (12)0.0479 (12)−0.0012 (9)0.0036 (9)0.0014 (10)
C70.0272 (9)0.0389 (10)0.0409 (10)0.0013 (8)−0.0009 (8)0.0020 (8)
C80.0307 (10)0.0479 (12)0.0409 (11)0.0006 (9)−0.0001 (9)0.0045 (9)
N10.0239 (8)0.0503 (10)0.0401 (9)0.0018 (7)−0.0002 (7)0.0076 (8)
N20.0507 (11)0.0446 (10)0.0521 (11)0.0028 (9)−0.0091 (10)0.0056 (9)
O10.0258 (7)0.0698 (11)0.0641 (10)0.0050 (7)0.0044 (7)0.0272 (8)
O20.0606 (11)0.0718 (12)0.0668 (12)0.0250 (10)0.0086 (10)0.0109 (10)
O30.0786 (13)0.0713 (12)0.0778 (13)0.0122 (11)−0.0056 (11)0.0361 (11)
Cl10.0558 (4)0.0395 (3)0.0635 (4)−0.0031 (2)−0.0001 (3)0.0064 (2)
Cl20.0740 (5)0.0778 (5)0.0467 (4)−0.0200 (4)−0.0084 (3)−0.0116 (3)

Geometric parameters (Å, °)

C1—C21.380 (3)C6—H60.93 (3)
C1—C61.386 (3)C7—O11.215 (2)
C1—N11.422 (2)C7—N11.335 (3)
C2—C31.379 (3)C7—C81.523 (3)
C2—H20.93 (2)C8—Cl11.764 (2)
C3—C41.376 (3)C8—Cl21.765 (2)
C3—N21.464 (3)C8—H80.90 (3)
C4—C51.377 (3)N1—H1N0.833 (16)
C4—H40.89 (3)N2—O31.220 (3)
C5—C61.380 (3)N2—O21.226 (3)
C5—H50.96 (3)
C2—C1—C6120.30 (19)C1—C6—H6120.0 (16)
C2—C1—N1121.86 (17)O1—C7—N1125.26 (19)
C6—C1—N1117.83 (18)O1—C7—C8121.32 (19)
C3—C2—C1117.65 (19)N1—C7—C8113.42 (17)
C3—C2—H2120.9 (15)C7—C8—Cl1108.99 (14)
C1—C2—H2121.5 (15)C7—C8—Cl2108.35 (15)
C4—C3—C2123.5 (2)Cl1—C8—Cl2110.62 (12)
C4—C3—N2119.03 (19)C7—C8—H8112.2 (15)
C2—C3—N2117.42 (19)Cl1—C8—H8107.9 (16)
C3—C4—C5117.6 (2)Cl2—C8—H8108.8 (15)
C3—C4—H4121.6 (17)C7—N1—C1125.44 (17)
C5—C4—H4120.8 (17)C7—N1—H1N116.8 (17)
C4—C5—C6120.8 (2)C1—N1—H1N117.5 (17)
C4—C5—H5120.9 (16)O3—N2—O2123.4 (2)
C6—C5—H5118.2 (16)O3—N2—C3118.5 (2)
C5—C6—C1120.2 (2)O2—N2—C3118.10 (18)
C5—C6—H6119.8 (16)
C6—C1—C2—C3−0.2 (3)N1—C7—C8—Cl1131.85 (17)
N1—C1—C2—C3179.62 (18)O1—C7—C8—Cl271.9 (2)
C1—C2—C3—C40.8 (3)N1—C7—C8—Cl2−107.71 (18)
C1—C2—C3—N2−179.58 (18)O1—C7—N1—C16.6 (4)
C2—C3—C4—C5−0.8 (3)C8—C7—N1—C1−173.76 (18)
N2—C3—C4—C5179.6 (2)C2—C1—N1—C7−35.6 (3)
C3—C4—C5—C60.1 (3)C6—C1—N1—C7144.2 (2)
C4—C5—C6—C10.5 (3)C4—C3—N2—O315.6 (3)
C2—C1—C6—C5−0.4 (3)C2—C3—N2—O3−164.0 (2)
N1—C1—C6—C5179.8 (2)C4—C3—N2—O2−162.0 (2)
O1—C7—C8—Cl1−48.5 (3)C2—C3—N2—O218.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.833 (16)2.081 (17)2.907 (2)171 (2)

Symmetry codes: (i) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2307).

References

  • Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3364.
  • Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 711–720 .
  • Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.
  • Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.
  • Oxford Diffraction (2004). CrysAlis CCD Version 1.171.26. Oxford Diffraction Ltd. Abingdon, Oxfordshire, England.
  • Oxford Diffraction (2007). CrysAlis RED Version 1.171.32.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography