PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m311–m312.
Published online 2008 January 9. doi:  10.1107/S1600536808000299
PMCID: PMC2960430

cis-Bis(azido-κN)bis­(pyridine-2-carbox­amide-κ2 N 1,O)nickel(II)

Abstract

The title compound, [Ni(N3)2(C6H6N2O)2], was obtained as the first crystalline product from the reaction of Ni(NO3)2·6H2O, picolinamide and NaN3 in aqueous media. After a few days in the mother liquor, crystals of the cis isomer transformed into the trans isomer [Đaković & Popović (2007 [triangle]). Acta Cryst. C63, m507–m509]. The Ni atom exhibits a distorted octa­hedral environment and contains two azide ions and two planar N,O-chelating picolinamide ligands, all cis related. The dihedral angle between the two chelate rings is 82.43 (7)°. Pairs of mol­ecules are linked by N—H(...)N hydrogen bonds into cyclic R 2 2(16) dimers, which are further packed into a three-dimensional framework by C(6) and C(8) chains by N—H(...)N hydrogen bonds.

Related literature

For information on the importance of azides in complexation, see Yuwen et al. (2000 [triangle]). A trans isomer of the title compound [Ni(N3)2(C6H6N2O)2] has been reported by Đaković & Popović (2007 [triangle]). For related literature, see: Allen et al. (1987 [triangle]); Bernstein et al. (1995 [triangle]); Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m311-scheme1.jpg

Experimental

Crystal data

  • [Ni(N3)2(C6H6N2O)2]
  • M r = 387.01
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m311-efi1.jpg
  • a = 14.3438 (5) Å
  • b = 6.6986 (2) Å
  • c = 18.7969 (10) Å
  • β = 120.738 (3)°
  • V = 1552.34 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.28 mm−1
  • T = 296 K
  • 0.22 × 0.18 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire3 detector
  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2007 [triangle]) T min = 0.815, T max = 0.938
  • 15901 measured reflections
  • 4516 independent reflections
  • 2692 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.068
  • S = 0.89
  • 4516 reflections
  • 242 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CrysAlisPro (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000299/kp2158sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000299/kp2158Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the Ministry of Science, Education and Sports of the Republic of Croatia, Zagreb (grant No. 119-1193079-1332).

supplementary crystallographic information

Comment

This research is a part of our wider interest of the structural role of azide ions and of its metal complexes in metabolic processes of mitohondria (Yuwen et al., 2000).

In the title compound NiIIatom lies in a general position and exhibits distorted octahedral environment (Fig. 1). The coordination sphere is composed by two cis-related N,O-chelating picolinamide and two azide ligands. The picolinamide ligands are bonded more tightly (Table 1) than in its trans-isomer (Đaković & Popović, 2007). All other bond lengths are comparable to the values reported for similar compounds (Allen et al., 1987). The azide ligands are coordinated to the central metal ion in non-linear mode (123.7 (1) and 123.0 (1)°) with the azide bond angles being 178.2 (2) and 176.9 (3)°.

The crystals of the title compound (I) are turquoise-green apart from the crystals of its trans-isomer which are olive-green.

The crystal structure (Fig 2) is stabilized by N—H···N hydrogen bond network between carboxamide groups and azide ligands. Typical amide N—H···O carboxamide dimers of R22(8) found in trans-isomer are not observed in the cis-isomer. Instead, the amide N atoms, N2 and N4, are involved in two hydrogen bonds, forming R22(16) rings, between two neighbouring molecules whereas C(8) chains along the axis c and C(6) chains along the axis b complete the network (Bernstein et al., 1995; Etter, 1990).

The slightly smaller density of (I), and the fact that it is formed first and then transformed into its trans-isomer, suggests that (I) is the thermodinamically less stable isomer.

Experimental

The title compound was obtained by in situ reaction from NiII nitrate hexahydrate, sodium azide and picolinamide in a 1: 2: 2 molar ratio. All starting substances were dissolved in water. The sodium azide solution was added in small portions with stirring into the solution mixture of the picolinamide and NiII nitrate. In a few h the dark-green crystals of (I) were isolated. If the crystals are left in a mother liquor for a few days the dark-green crystals of (I) were transformed into the olive-green trans-isomer.

Refinement

Aromatic H atoms were fixed in geometrically idealized positions and refined using a riding model with [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The amide H atoms were placed in the positions indicated by difference electron-density maps and their positions were allowed to refine together with individual isotropic displacement parameters.

Figures

Fig. 1.
The ORTEP-3 drawing of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
Fig. 2.
Crystal packing of (I) showing the hydrogen bonds as dashed lines.

Crystal data

[Ni(N3)2(C6H6N2O)2]F000 = 792
Mr = 387.01Dx = 1.656 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5015 reflections
a = 14.3438 (5) Åθ = 3.8–32.4º
b = 6.6986 (2) ŵ = 1.28 mm1
c = 18.7969 (10) ÅT = 296 K
β = 120.738 (3)ºPlate, blue
V = 1552.34 (12) Å30.22 × 0.18 × 0.05 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire3 detector4516 independent reflections
Radiation source: Enhance (Mo) X-ray Source2692 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
Detector resolution: 16.3426 pixels mm-1θmax = 30.0º
T = 296 Kθmin = 3.8º
CCD scansh = −20→20
Absorption correction: multi-scan(CrysAlisPro; Oxford Diffraction, 2007)k = −9→9
Tmin = 0.815, Tmax = 0.938l = −26→26
15901 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068  w = 1/[σ2(Fo2) + (0.0323P)2] where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
4516 reflectionsΔρmax = 0.43 e Å3
242 parametersΔρmin = −0.30 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.23220 (2)0.37068 (3)0.22317 (1)0.0317 (1)
O10.26131 (9)0.2742 (2)0.33739 (8)0.0434 (4)
O20.20315 (9)0.08148 (18)0.17407 (8)0.0398 (4)
N10.39913 (11)0.3396 (2)0.28785 (9)0.0334 (4)
N20.38916 (17)0.2368 (3)0.47094 (11)0.0477 (6)
N30.06825 (11)0.3406 (2)0.17609 (8)0.0323 (4)
N40.07207 (16)−0.1400 (3)0.09546 (11)0.0461 (6)
N50.24200 (12)0.6613 (2)0.26310 (10)0.0428 (5)
N60.31950 (13)0.7291 (2)0.32014 (10)0.0385 (5)
N70.39487 (16)0.8009 (3)0.37649 (12)0.0648 (7)
N80.21165 (13)0.4829 (2)0.11250 (10)0.0447 (6)
N90.20157 (13)0.3801 (2)0.05837 (10)0.0423 (5)
N100.1963 (2)0.2815 (3)0.00574 (13)0.0815 (9)
C10.44295 (14)0.2970 (3)0.36860 (11)0.0342 (6)
C20.55345 (15)0.2892 (3)0.42221 (13)0.0468 (7)
C30.62099 (16)0.3289 (3)0.39169 (14)0.0531 (8)
C40.57737 (15)0.3711 (3)0.30972 (13)0.0482 (7)
C50.46602 (15)0.3750 (3)0.25924 (12)0.0403 (6)
C60.35865 (14)0.2657 (3)0.39230 (11)0.0352 (6)
C70.02452 (13)0.1678 (3)0.13675 (10)0.0341 (5)
C8−0.08351 (14)0.1241 (3)0.10454 (12)0.0467 (6)
C9−0.14833 (16)0.2628 (4)0.11367 (13)0.0573 (8)
C10−0.10408 (16)0.4361 (4)0.15429 (12)0.0512 (7)
C110.00463 (15)0.4720 (3)0.18414 (11)0.0426 (6)
C120.10687 (14)0.0314 (3)0.13626 (10)0.0340 (6)
H20.581900.257900.477800.0560*
H30.695900.326800.426900.0640*
H40.621900.396800.288200.0580*
H50.436300.403300.203300.0480*
H8−0.112400.004000.077200.0560*
H9−0.221700.237200.092100.0690*
H10−0.146200.529300.161900.0610*
H110.034400.592400.210800.0510*
H120.4567 (19)0.229 (3)0.5093 (14)0.060 (7)*
H130.3411 (17)0.224 (3)0.4844 (12)0.049 (6)*
H140.1179 (17)−0.220 (3)0.1030 (13)0.048 (7)*
H15−0.001 (2)−0.180 (3)0.0684 (15)0.076 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0266 (1)0.0335 (1)0.0333 (1)−0.0016 (1)0.0141 (1)−0.0003 (1)
O10.0295 (7)0.0589 (9)0.0385 (7)−0.0032 (6)0.0149 (6)0.0086 (6)
O20.0307 (7)0.0327 (7)0.0541 (8)0.0009 (5)0.0203 (6)−0.0001 (6)
N10.0283 (7)0.0316 (8)0.0397 (8)−0.0026 (6)0.0170 (6)−0.0001 (7)
N20.0427 (11)0.0594 (12)0.0359 (10)−0.0036 (9)0.0164 (9)0.0035 (9)
N30.0282 (7)0.0349 (9)0.0314 (7)0.0022 (6)0.0136 (6)0.0001 (7)
N40.0430 (10)0.0347 (10)0.0493 (10)0.0040 (9)0.0154 (8)−0.0012 (8)
N50.0387 (9)0.0392 (10)0.0429 (9)−0.0012 (7)0.0154 (8)−0.0075 (8)
N60.0427 (9)0.0333 (9)0.0391 (9)0.0023 (8)0.0206 (8)−0.0010 (8)
N70.0520 (12)0.0594 (12)0.0527 (11)−0.0042 (9)0.0048 (9)−0.0122 (10)
N80.0602 (10)0.0388 (10)0.0398 (9)−0.0011 (8)0.0290 (8)−0.0004 (8)
N90.0484 (9)0.0424 (10)0.0381 (9)−0.0028 (8)0.0236 (8)0.0049 (9)
N100.138 (2)0.0638 (14)0.0597 (13)−0.0046 (14)0.0629 (15)−0.0130 (11)
C10.0309 (9)0.0304 (10)0.0373 (10)−0.0016 (8)0.0145 (8)−0.0022 (8)
C20.0319 (10)0.0545 (13)0.0433 (11)−0.0021 (9)0.0114 (9)−0.0047 (10)
C30.0271 (10)0.0607 (15)0.0608 (14)0.0003 (9)0.0147 (10)−0.0090 (11)
C40.0366 (10)0.0476 (12)0.0687 (14)−0.0008 (10)0.0329 (10)−0.0020 (11)
C50.0390 (10)0.0381 (11)0.0501 (11)−0.0008 (9)0.0274 (9)0.0006 (10)
C60.0341 (10)0.0321 (11)0.0351 (10)−0.0031 (8)0.0146 (8)0.0016 (8)
C70.0283 (8)0.0435 (11)0.0275 (8)0.0007 (8)0.0121 (7)0.0025 (8)
C80.0320 (10)0.0598 (13)0.0411 (10)−0.0076 (10)0.0134 (8)−0.0059 (10)
C90.0258 (10)0.097 (2)0.0460 (12)0.0026 (11)0.0162 (9)−0.0008 (12)
C100.0369 (11)0.0722 (16)0.0451 (11)0.0160 (11)0.0214 (10)0.0006 (11)
C110.0411 (10)0.0473 (12)0.0392 (10)0.0116 (9)0.0204 (9)0.0022 (9)
C120.0360 (10)0.0320 (10)0.0317 (9)0.0003 (8)0.0157 (8)0.0024 (8)

Geometric parameters (Å, °)

Ni1—O12.0701 (13)N4—H140.80 (2)
Ni1—O22.0941 (12)N4—H150.94 (3)
Ni1—N12.0685 (17)C1—C61.502 (3)
Ni1—N32.0559 (17)C1—C21.378 (3)
Ni1—N52.0652 (14)C2—C31.381 (4)
Ni1—N82.0863 (17)C3—C41.364 (3)
O1—C61.243 (2)C4—C51.379 (3)
O2—C121.234 (3)C7—C81.376 (3)
N1—C11.344 (2)C7—C121.497 (3)
N1—C51.339 (3)C8—C91.386 (3)
N2—C61.324 (3)C9—C101.356 (4)
N3—C71.344 (2)C10—C111.382 (3)
N3—C111.331 (3)C2—H20.9300
N4—C121.328 (3)C3—H30.9300
N5—N61.172 (2)C4—H40.9300
N6—N71.163 (3)C5—H50.9300
N8—N91.175 (2)C8—H80.9300
N9—N101.159 (3)C9—H90.9300
N2—H120.86 (3)C10—H100.9300
N2—H130.85 (3)C11—H110.9300
O1—Ni1—O293.30 (5)C2—C1—C6125.28 (17)
O1—Ni1—N178.45 (6)C1—C2—C3118.6 (2)
O1—Ni1—N389.76 (6)C2—C3—C4119.7 (2)
O1—Ni1—N588.69 (6)C3—C4—C5118.8 (2)
O1—Ni1—N8175.91 (6)N1—C5—C4122.39 (18)
O2—Ni1—N194.34 (6)O1—C6—N2121.6 (2)
O2—Ni1—N378.08 (6)N2—C6—C1119.7 (2)
O2—Ni1—N5173.44 (7)O1—C6—C1118.71 (16)
O2—Ni1—N889.94 (5)C8—C7—C12125.59 (18)
N1—Ni1—N3165.67 (6)N3—C7—C12112.41 (17)
N1—Ni1—N592.18 (6)N3—C7—C8121.95 (19)
N1—Ni1—N898.83 (7)C7—C8—C9118.6 (2)
N3—Ni1—N595.69 (7)C8—C9—C10119.6 (2)
N3—Ni1—N893.36 (7)C9—C10—C11118.9 (2)
N5—Ni1—N888.36 (6)N3—C11—C10122.39 (19)
Ni1—O1—C6114.90 (13)N4—C12—C7117.8 (2)
Ni1—O2—C12114.68 (13)O2—C12—N4123.2 (2)
Ni1—N1—C1114.71 (14)O2—C12—C7119.01 (17)
Ni1—N1—C5126.71 (13)C1—C2—H2121.00
C1—N1—C5118.28 (18)C3—C2—H2121.00
Ni1—N3—C7115.52 (13)C2—C3—H3120.00
Ni1—N3—C11125.88 (13)C4—C3—H3120.00
C7—N3—C11118.55 (18)C3—C4—H4121.00
Ni1—N5—N6123.67 (13)C5—C4—H4121.00
N5—N6—N7178.2 (2)N1—C5—H5119.00
Ni1—N8—N9122.99 (12)C4—C5—H5119.00
N8—N9—N10176.9 (3)C7—C8—H8121.00
H12—N2—H13119 (2)C9—C8—H8121.00
C6—N2—H12122.0 (18)C8—C9—H9120.00
C6—N2—H13119.4 (14)C10—C9—H9120.00
C12—N4—H14116.3 (16)C9—C10—H10121.00
C12—N4—H15123.0 (15)C11—C10—H10121.00
H14—N4—H15119 (2)N3—C11—H11119.00
N1—C1—C2122.2 (2)C10—C11—H11119.00
N1—C1—C6112.46 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H12···N7i0.86 (3)2.12 (2)2.967 (3)165 (3)
N2—H13···N10ii0.85 (3)2.31 (3)3.154 (4)172 (2)
N4—H14···N8iii0.80 (2)2.36 (2)3.136 (3)164 (2)
N4—H15···N10iv0.94 (3)2.50 (3)3.442 (4)179 (3)
C2—H2···N7i0.932.613.516 (3)163
C4—H4···O2v0.932.553.318 (3)140
C8—H8···N10iv0.932.373.297 (3)174
C10—H10···O1vi0.932.333.256 (3)172

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2; (iii) x, y−1, z; (iv) −x, −y, −z; (v) −x+1, y+1/2, −z+1/2; (vi) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2158).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Đaković, M. & Popović, Z. (2007). Acta Cryst. C63, m507–m509. [PubMed]
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst 39, 453–457
  • Oxford Diffraction (2007). CrysAlisPro Version 171.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Yuwen, L., Yi, L., Songshen, Q. & Fengjiao, D. (2000). Thermochim. Acta, 351, 51–54.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography