PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m426.
Published online 2008 January 30. doi:  10.1107/S1600536808002559
PMCID: PMC2960429

trans-Tetra­aqua­bis[3-(3-pyrid­yl)acrylato-κN]cobalt(II)

Abstract

The asymmetric unit of the title compound, [Co(C8H6NO2)2(H2O)4], contains one half-mol­ecule. The CoII atom lies on an inversion centre and is coordinated by two N atoms of the pyridine rings of 3-(3-pyrid­yl)acrylate anions and four O atoms of water mol­ecules in a distorted octa­hedral coordination geometry. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules, forming a three-dimensional network.

Related literature

For related literature, see: Ayyappan et al. (2001 [triangle]); Kurmoo et al. (2005 [triangle]); Tong et al. (2003 [triangle]); Zhou et al. (2006 [triangle]); For related structures, see: Huang et al. (2005 [triangle]); Tang et al. (2006 [triangle]); Yang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m426-scheme1.jpg

Experimental

Crystal data

  • [Co(C8H6NO2)2(H2O)4]
  • M r = 427.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m426-efi7.jpg
  • a = 11.235 (1) Å
  • b = 7.020 (1) Å
  • c = 12.012 (1) Å
  • β = 112.81 (1)°
  • V = 873.29 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.03 mm−1
  • T = 294 (2) K
  • 0.40 × 0.25 × 0.20 mm

Data collection

  • Siemens P4 diffractometer
  • Absorption correction: ψ scan (XEMP; Siemens, 1994 [triangle]) T min = 0.672, T max = 0.808
  • 3307 measured reflections
  • 2533 independent reflections
  • 2255 reflections with I > 2σ(I)
  • R int = 0.030
  • 3 standard reflections every 97 reflections intensity decay: 2.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.156
  • S = 1.10
  • 2533 reflections
  • 124 parameters
  • H-atom parameters constrained
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.84 e Å−3

Data collection: XSCANS (Siemens, 1994 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808002559/hk2421sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002559/hk2421Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (grant Nos. 1/4454/07 and 1/0353/08).

supplementary crystallographic information

Comment

Several CoII coordination polymers that contain a bridging 3-(3-pyridyl) -acrylate ligands have been reported recently (Ayyappan et al., 2001; Kurmoo et al., 2005; Tong et al., 2003; Zhou et al., 2006). However, if the 3-(3-pyridyl)-acrylate anions are coordinated only as terminal ligands, the possibility of participating in a hydrogen-bonding network originates. As part of our efforts to investigate metal(II) complexes based on pyridyl- carboxylic acids, we report herein the crystal structure of the title compound, (I).

In the molecule of the title compound, (I), (Fig. 1) CoII atom lies on an inversion centre and adopts a distorted octahedral coordination geometry with two N atoms of the pyridine rings of 3-(3-pyridyl)-acrylate anions and four O atoms of water molecules (Table 1), where the two symmetry related 3-(3-pyridyl)-acrylate ligands are in trans positions.

The bond lengths and angles may be compared with the corresponding values in [Co(C8H6NO2)2(H2O)4].2H2O [(II); Huang et al., 2005]. In (II), CoII atom displays a similar distorted octahedral coordination geometry, but the existence of two more water molecules result in the formation of a different hydrogen-bonding network. On the other hand, complex (I) is isostructural with [Zn(C8H6NO2)2(H2O)4] [(III); Tang et al., 2006; Yang et al., 2006] and [Mn(C8H6NO2)2(H2O)4] [(IV); Huang et al., 2005].

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 2) link the molecules to form a three-dimensional network.

Experimental

Well shaped crystals of (I) suitable for X-ray analysis were prepared in an H-tube. In the first part of the H-tube, there was aqueous solutions of sodium salt of 3-(3-pyridyl)-acrylic acid and in the second part, there was aquous solution of Co(II) sulfate. The crystals formed after one month, they were separated and dried at room temperature (yield; 75%). The Anal. Calc.: C, 44.98; H, 6.61; N, 6.56; Co, 13.79; Found: C, 44.72; H, 6.31; N, 6.40; Co, 13.45. IR data (KBr) cm-1: 1646mν(C?C); 1547vs νas(COO-); 1371vs,br νs(COO-); 649mδ(py); 415mχ(py). Electronic data (cm-1): 20200; 21200s h; 9100br.

Refinement

H atoms were positioned geometrically with O—H = 0.82 Å (for OH2 and their displacement parameters were kept fixed as Uiso = 0.032 Å2) and C—H = 0.93 Å, for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level
Fig. 2.
A packing diagram of (I). Hydrogen bonds are shown as dashed lines [symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x + 1/2, -y + 3/2, z - 1/2; (iii) x + 1/2, -y + 1/2, z - 1/2].

Crystal data

[Co(C8H6NO2)2(H2O)4]F000 = 442
Mr = 427.27Dx = 1.625 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.235 (1) Åθ = 2.5–8.7º
b = 7.020 (1) ŵ = 1.03 mm1
c = 12.012 (1) ÅT = 294 (2) K
β = 112.81 (1)ºBlock, pink
V = 873.29 (18) Å30.40 × 0.25 × 0.20 mm
Z = 2

Data collection

Siemens P4 diffractometerRint = 0.030
Radiation source: fine-focus sealed tubeθmax = 30.0º
Monochromator: graphiteθmin = 2.1º
T = 294(2) Kh = −1→15
2θ/ω scansk = −1→9
Absorption correction: ψ scan(XEMP; Siemens, 1994)l = −16→15
Tmin = 0.672, Tmax = 0.8083 standard reflections
3307 measured reflections every 97 reflections
2533 independent reflections intensity decay: 2.5%
2255 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.156  w = 1/[σ2(Fo2) + (0.1034P)2 + 0.5011P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2533 reflectionsΔρmax = 0.65 e Å3
124 parametersΔρmin = −0.84 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co0.50000.50000.50000.01873 (16)
N10.44388 (17)0.5543 (3)0.65137 (17)0.0228 (4)
O1−0.13338 (15)0.6559 (3)0.61120 (16)0.0328 (4)
O2−0.12936 (18)0.5143 (2)0.77834 (18)0.0264 (4)
O1W0.38329 (15)0.2573 (2)0.45303 (14)0.0257 (3)
H1W0.39590.17390.41110.032*
H2W0.30720.28840.43060.032*
O2W0.33927 (15)0.6646 (2)0.39394 (15)0.0270 (3)
H3W0.28000.60920.34070.032*
H4W0.35670.77010.37510.032*
C10.3185 (2)0.5672 (3)0.63318 (19)0.0236 (4)
H10.25780.55450.55460.028*
C20.27363 (19)0.5986 (3)0.72477 (19)0.0217 (4)
C30.3653 (2)0.6228 (3)0.84170 (19)0.0248 (4)
H30.34000.64630.90550.030*
C40.4946 (2)0.6114 (4)0.86108 (19)0.0273 (4)
H40.55740.62710.93840.033*
C50.5303 (2)0.5765 (3)0.7649 (2)0.0243 (4)
H50.61770.56810.77950.029*
C60.1337 (2)0.6061 (3)0.69088 (19)0.0238 (4)
H60.08380.63010.61000.029*
C70.0699 (2)0.5824 (3)0.7628 (2)0.0249 (4)
H70.11530.56350.84520.030*
C8−0.07372 (19)0.5859 (3)0.71227 (19)0.0216 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co0.0127 (2)0.0260 (2)0.0190 (2)−0.00015 (12)0.00773 (16)−0.00068 (12)
N10.0157 (8)0.0320 (9)0.0231 (8)−0.0009 (7)0.0103 (6)−0.0001 (7)
O10.0190 (7)0.0495 (10)0.0296 (8)−0.0006 (7)0.0091 (6)0.0048 (7)
O20.0215 (8)0.0310 (9)0.0317 (9)−0.0023 (6)0.0158 (7)−0.0007 (6)
O1W0.0187 (7)0.0311 (8)0.0281 (8)−0.0023 (6)0.0098 (6)−0.0046 (6)
O2W0.0178 (7)0.0323 (8)0.0292 (8)−0.0012 (6)0.0072 (6)0.0063 (6)
C10.0155 (8)0.0353 (11)0.0219 (9)−0.0015 (8)0.0092 (7)−0.0026 (8)
C20.0167 (8)0.0272 (9)0.0240 (9)−0.0002 (7)0.0108 (7)−0.0010 (7)
C30.0220 (9)0.0341 (11)0.0209 (9)0.0016 (8)0.0111 (8)−0.0010 (8)
C40.0205 (9)0.0390 (11)0.0204 (9)0.0006 (8)0.0058 (7)−0.0017 (8)
C50.0166 (9)0.0301 (11)0.0265 (10)−0.0004 (8)0.0086 (8)−0.0012 (8)
C60.0168 (8)0.0306 (10)0.0252 (9)0.0005 (7)0.0097 (7)−0.0011 (8)
C70.0169 (9)0.0337 (11)0.0256 (9)−0.0012 (8)0.0098 (7)−0.0030 (8)
C80.0179 (8)0.0248 (9)0.0252 (9)−0.0014 (7)0.0117 (7)−0.0046 (7)

Geometric parameters (Å, °)

Co—O1Wi2.0895 (16)C1—C21.394 (3)
Co—O1W2.0895 (16)C1—H10.9300
Co—O2Wi2.1061 (16)C2—C31.393 (3)
Co—O2W2.1061 (16)C2—C61.465 (3)
Co—N1i2.1765 (18)C3—C41.382 (3)
Co—N12.1765 (18)C3—H30.9300
N1—C51.342 (3)C4—C51.384 (3)
N1—C11.343 (3)C4—H40.9300
O1—C81.238 (3)C5—H50.9300
O2—C81.288 (3)C6—C71.329 (3)
O1W—H1W0.82C6—H60.9300
O1W—H2W0.82C7—C81.488 (3)
O2W—H3W0.82C7—H70.9300
O2W—H4W0.82
O1Wi—Co—O1W180.0N1—C1—C2124.1 (2)
O1Wi—Co—O2Wi89.02 (6)N1—C1—H1118.0
O1W—Co—O2Wi90.98 (6)C2—C1—H1118.0
O1Wi—Co—O2W90.98 (6)C3—C2—C1117.57 (19)
O1W—Co—O2W89.02 (6)C3—C2—C6124.77 (18)
O2Wi—Co—O2W180.0C1—C2—C6117.65 (19)
O1Wi—Co—N1i90.78 (7)C4—C3—C2118.75 (19)
O1W—Co—N1i89.22 (7)C4—C3—H3120.6
O2Wi—Co—N1i87.20 (7)C2—C3—H3120.6
O2W—Co—N1i92.80 (7)C3—C4—C5119.7 (2)
O1Wi—Co—N189.22 (7)C3—C4—H4120.1
O1W—Co—N190.78 (7)C5—C4—H4120.1
O2Wi—Co—N192.80 (7)N1—C5—C4122.64 (19)
O2W—Co—N187.20 (7)N1—C5—H5118.7
N1i—Co—N1180.0C4—C5—H5118.7
C5—N1—C1117.26 (18)C7—C6—C2127.3 (2)
C5—N1—Co122.64 (14)C7—C6—H6116.4
C1—N1—Co120.10 (14)C2—C6—H6116.4
Co—O1W—H1W120.6C6—C7—C8120.3 (2)
Co—O1W—H2W109.7C6—C7—H7119.8
H1W—O1W—H2W113.2C8—C7—H7119.8
Co—O2W—H3W117.2O1—C8—O2123.5 (2)
Co—O2W—H4W114.9O1—C8—C7119.73 (19)
H3W—O2W—H4W115.0O2—C8—C7116.8 (2)
O1Wi—Co—N1—C5−54.14 (19)C1—C2—C3—C4−1.1 (3)
O1W—Co—N1—C5125.86 (19)C6—C2—C3—C4179.7 (2)
O2Wi—Co—N1—C534.84 (19)C2—C3—C4—C50.0 (4)
O2W—Co—N1—C5−145.16 (19)C1—N1—C5—C40.0 (4)
O1Wi—Co—N1—C1125.68 (19)Co—N1—C5—C4179.86 (18)
O1W—Co—N1—C1−54.32 (19)C3—C4—C5—N10.5 (4)
O2Wi—Co—N1—C1−145.34 (19)C3—C2—C6—C7−20.7 (4)
O2W—Co—N1—C134.66 (19)C1—C2—C6—C7160.2 (2)
C5—N1—C1—C2−1.2 (4)C2—C6—C7—C8−177.2 (2)
Co—N1—C1—C2178.93 (18)C6—C7—C8—O1−17.7 (3)
N1—C1—C2—C31.8 (4)C6—C7—C8—O2162.4 (2)
N1—C1—C2—C6−179.0 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H3W···O2ii0.821.952.764 (3)175
O2W—H4W···O2iii0.821.952.741 (2)161
O1W—H2W···O1ii0.821.862.678 (2)175
O1W—H1W···O2iv0.822.002.798 (2)163

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x+1/2, −y+3/2, z−1/2; (iv) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2421).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Ayyappan, P., Evans, O. R. & Lin, W. (2001). Inorg. Chem.40, 4627–4632. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Huang, Y.-G., Zhou, Y.-F., Wu, B.-L., Han, L., Yuan, D.-Q., Lou, B.-Q. & Hong, M.-C. (2005). Chin. J. Struct. Chem.24, 1123–1128.
  • Kurmoo, M., Rstournes, C., Oka, Y., Kumagai, H. & Inoue, K. (2005). Inorg. Chem.44, 217–224. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). XSCANS and XEMP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tang, L., Li, D.-S., Fu, F., Li, J., Zhao, X.-Z. & Wang, J.-W. (2006). Z. Kristallogr. New Cryst. Struct.221, 441–442.
  • Tong, M.-L., Chen, X.-M. & Batten, S. R. (2003). J. Am. Chem. Soc.125, 16170–16171. [PubMed]
  • Yang, E., Chen, Q.-Y. & Chen, G.-Y. (2006). Acta Cryst. E62, m1043–m1044.
  • Zhou, Q.-X., Bai, X.-J. & Chen, L.-P. (2006). Chin. J. Struct. Chem.25, 49–52.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography