PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o501–o502.
Published online 2008 January 23. doi:  10.1107/S1600536808002146
PMCID: PMC2960428

4′-Amino-2,2′′-dioxo-2,2′′,3,3′′-tetra­hydro-1H-indole-3-spiro-1′-cyclo­pent-3′-ene-2′-spiro-3′′-1H-indole-3′,5′,5′-tricarbonitrile dihydrate

Abstract

In the title compound, C22H12N6O2·2H2O, the cyclo­pentene ring adopts an envelope conformation, with the spiro C atom bonded to the dicyano-substituted C atom deviating by 0.437 (2) Å from the plane of the remaining four atoms in the ring. The puckering and smallest displacement asymmetry parameters for the ring are q 2 = 0.275 (2) Å, ϕ = 212.4 (4)° and Δs(C2) = 2.7 (2). The dihedral angle between the two indole groups is 60.1 (1)°. The structure contains inter­molecular N—H(...)O hydrogen bonds involving the indole groups and O—H(...)O and O—H(...)N hydrogen bonds involving the water mol­ecules.

Related literature

For related literature, see: Akai et al. (2004 [triangle]); Cremer & Pople (1975 [triangle]); Gallagher et al. (1985 [triangle]); Nagata et al. (2001 [triangle]); Nardelli (1983 [triangle]); Williams & Cox (2003 [triangle]); Zaveri et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o501-scheme1.jpg

Experimental

Crystal data

  • C22H12N6O2·2H2O
  • M r = 428.41
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o501-efi1.jpg
  • a = 17.1850 (16) Å
  • b = 8.9849 (9) Å
  • c = 13.3275 (13) Å
  • V = 2057.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 (2) K
  • 0.25 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: none
  • 16968 measured reflections
  • 2551 independent reflections
  • 2367 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.108
  • S = 1.06
  • 2551 reflections
  • 313 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808002146/bi2273sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002146/bi2273Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. Financial support from the University Grants Commission (UGC–SAP) and Department of Science and Technology (DST–FIST), Government of India, is acknowledged by DV for providing facilities to the department.

supplementary crystallographic information

Comment

The indole template is generally recognized as an important structure in medicinal chemistry, and in particular, oxindoles are important constituents of natural indole alkaloids as well as drugs in development and also in the clinic (Akai et al., 2004). Among them, the spiro-oxindole framework is an important structural motif in biologically relevant compounds such as natural products and pharmaceuticals (Williams & Cox, 2003). The oxindole motif is present in the anti-Parkinson's drug ropinirole (Gallagher et al., 1985), in non-opioid nociceptin receptor ligands (Zaveri et al., 2004), and in the growth hormone secretagogues (Nagata et al., 2001). As the title compound is biologically important, we have determined its crystal structure using X-ray diffraction.

One of the oxindole moieties (C2/C13/N2/C14/C19) is planar with atom O2 deviating by 0.127 (1) Å from the plane of five-membered ring. The dihedral angle between the five- (C2/C13/N2/C14/C19) and six-membered (C14—C19) rings is 1.6 (1)°. The cyclopentene ring adopts an envelope conformation with C2 deviating by 0.437 (2) Å from the plane of the rest of the atoms in the ring. The five-membered ring (N1/C6/C1/C12/C7) in the oxindole moieties adopts a slightly twisted conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the cyclopentene ring and the five-membered ring (N1/C6/C1/C12/C7) are q2 = 0.275 (2)Å and 0.091 (2) Å, [var phi] = 212.4 (4)° and 56.3 (12)° and Δs(C2) = 2.7 (2) and Δ2(C7) = 0.5 (2), respectively.

Experimental

To a stirred mixture of isatylidene malononitrile (2 mmol) and Hantzsch dihydropyridine ester (1 mmol) in ethanol (10 ml), a catalytic amount of indium(III) chloride (20 mol%) was added and the mixture was stirred at room temperature for about 1–2 h. After complete conversion (as indicated by TLC), the reaction mixture was poured into water and extracted with ethyl acetate (2 × 15 ml). The combined extracts were dried over anhydrous Na2SO4 and concentrated in vacuo. The resulting product was purified by column chromatography on silica gel (Merck, 60–120 mesh, ethyl acetate-hexane, 4:6) to afford the pure product in 88% yield as a white solid. Crystals were grown by slow evaporation from ethanol.

Refinement

H atoms of the NH2 group and water molecules were located in a difference Fourier map and refined with the N—H and O—H distances restrained to 0.90 (1) and 0.85 (1) Å, respectively. H atoms bound to C atoms and the N atoms of the indole rings were placed geometrically and refined using a riding model with d(C—H) = 0.93 Å, d(N—H) = 0.86 Å, and Uiso(H) = 1.2 Ueq(C/N). In the absence of significant anomalous scattering effects, 2271 Friedel pairs were merged as equivalent data.

Figures

Fig. 1.
The molecular structure of title compound, showing 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The molecular packing viewed down the a axis, showing O—H···N and O—H···O intermolecular interactions.
Fig. 3.
The molecular packing viewed down the a axis, showing N—H···O intermolecular interactions.

Crystal data

C22H12N6O2·2H2OF000 = 888
Mr = 428.41Dx = 1.383 Mg m3
Orthorhombic, Pna21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2386 reflections
a = 17.1850 (16) Åθ = 2.4–28.0º
b = 8.9849 (9) ŵ = 0.10 mm1
c = 13.3275 (13) ÅT = 293 (2) K
V = 2057.8 (3) Å3Block, colorless
Z = 40.25 × 0.24 × 0.20 mm

Data collection

Bruker SMART APEX CCD diffractometer2367 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Monochromator: graphiteθmax = 28.0º
T = 293(2) Kθmin = 2.4º
ω scansh = −22→22
Absorption correction: nonek = −11→11
16968 measured reflectionsl = −17→17
2551 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108  w = 1/[σ2(Fo2) + (0.0751P)2 + 0.1068P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2551 reflectionsΔρmax = 0.27 e Å3
313 parametersΔρmin = −0.14 e Å3
9 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.19406 (12)0.1506 (2)0.03645 (16)0.0341 (4)
C20.19661 (11)0.0810 (2)0.14549 (15)0.0320 (4)
C30.11505 (12)0.1206 (2)0.19253 (16)0.0352 (4)
C40.09089 (12)0.2598 (2)0.13339 (17)0.0349 (4)
C50.13624 (13)0.2738 (2)0.05081 (16)0.0354 (4)
C60.16280 (14)0.0331 (2)−0.03919 (16)0.0414 (5)
C70.28704 (15)0.0835 (3)−0.08495 (19)0.0452 (5)
C80.35505 (18)0.0831 (4)−0.1392 (2)0.0614 (7)
H8A0.36360.0143−0.19020.074*
C90.41025 (19)0.1889 (4)−0.1150 (3)0.0679 (8)
H9A0.45700.1906−0.15010.082*
C100.39785 (17)0.2922 (4)−0.0399 (3)0.0612 (7)
H10A0.43580.3629−0.02560.073*
C110.32867 (16)0.2907 (3)0.0144 (2)0.0489 (6)
H11A0.31980.36070.06450.059*
C120.27339 (13)0.1839 (2)−0.00708 (16)0.0375 (4)
C130.25886 (12)0.1685 (2)0.20696 (15)0.0340 (4)
C140.29683 (12)−0.0747 (2)0.20308 (17)0.0378 (4)
C150.34057 (15)−0.2019 (3)0.2170 (2)0.0493 (6)
H15A0.3882−0.19920.25010.059*
C160.31063 (17)−0.3336 (3)0.1795 (2)0.0564 (7)
H16A0.3388−0.42110.18780.068*
C170.24070 (18)−0.3388 (3)0.1305 (2)0.0581 (7)
H17A0.2221−0.42930.10650.070*
C180.19709 (16)−0.2097 (2)0.1161 (2)0.0489 (6)
H18A0.1497−0.21290.08240.059*
C190.22569 (13)−0.0769 (2)0.15289 (16)0.0364 (4)
C200.12114 (15)0.1500 (3)0.30204 (19)0.0449 (5)
C210.05602 (14)0.0018 (3)0.1798 (2)0.0470 (5)
C220.12327 (16)0.3857 (3)−0.0210 (2)0.0506 (6)
N10.22129 (14)−0.0067 (2)−0.09965 (16)0.0486 (5)
H10.2189−0.0785−0.14220.058*
N20.31446 (11)0.0717 (2)0.23268 (15)0.0413 (4)
H20.35640.09620.26390.050*
N30.12535 (18)0.1713 (4)0.38515 (19)0.0706 (7)
N40.01054 (15)−0.0884 (3)0.1731 (3)0.0727 (8)
N50.03222 (13)0.3429 (3)0.16605 (18)0.0498 (5)
H5A0.0025 (15)0.311 (3)0.2169 (17)0.048 (7)*
H5B0.011 (2)0.417 (3)0.130 (3)0.070 (10)*
N60.1106 (2)0.4754 (4)−0.0785 (3)0.0916 (11)
O10.09597 (11)−0.0125 (2)−0.04096 (16)0.0567 (5)
O20.25526 (10)0.29951 (16)0.22853 (13)0.0429 (4)
O30.05768 (12)0.7461 (2)0.83632 (15)0.0540 (4)
H3A0.073 (3)0.830 (3)0.858 (3)0.107 (15)*
H3B0.054 (4)0.692 (4)0.888 (2)0.15 (2)*
O40.0238 (2)0.3832 (4)0.5501 (3)0.0938 (9)
H4A0.020 (4)0.322 (6)0.599 (4)0.16 (3)*
H4B0.066 (2)0.360 (6)0.521 (4)0.13 (2)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0439 (10)0.0289 (9)0.0294 (9)0.0008 (8)−0.0003 (8)−0.0036 (7)
C20.0387 (9)0.0268 (9)0.0304 (9)−0.0010 (7)−0.0022 (8)−0.0033 (7)
C30.0384 (9)0.0334 (9)0.0338 (10)−0.0009 (8)0.0006 (8)0.0015 (8)
C40.0404 (10)0.0319 (9)0.0325 (9)−0.0002 (7)−0.0024 (8)−0.0019 (8)
C50.0428 (10)0.0329 (10)0.0305 (9)0.0024 (8)−0.0017 (8)−0.0015 (8)
C60.0565 (13)0.0354 (10)0.0324 (10)0.0013 (9)−0.0081 (10)−0.0082 (8)
C70.0582 (13)0.0408 (11)0.0367 (11)0.0131 (10)0.0031 (10)−0.0020 (9)
C80.0700 (18)0.0639 (17)0.0503 (15)0.0182 (13)0.0193 (14)−0.0015 (13)
C90.0570 (16)0.083 (2)0.0642 (18)0.0135 (15)0.0240 (14)0.0145 (17)
C100.0539 (15)0.0616 (16)0.0682 (19)−0.0052 (12)0.0088 (14)0.0140 (14)
C110.0552 (14)0.0411 (12)0.0504 (14)−0.0037 (10)0.0070 (11)−0.0017 (10)
C120.0449 (11)0.0353 (10)0.0321 (10)0.0060 (8)0.0030 (9)0.0003 (8)
C130.0407 (9)0.0341 (9)0.0271 (9)−0.0040 (8)0.0010 (8)−0.0036 (7)
C140.0443 (10)0.0351 (10)0.0340 (10)0.0029 (8)0.0020 (9)−0.0012 (8)
C150.0517 (13)0.0486 (13)0.0476 (13)0.0143 (10)0.0002 (11)0.0010 (11)
C160.0687 (16)0.0374 (11)0.0632 (16)0.0167 (11)0.0081 (13)0.0036 (11)
C170.0764 (18)0.0286 (11)0.0692 (18)0.0006 (11)0.0009 (14)−0.0073 (11)
C180.0586 (14)0.0320 (10)0.0563 (14)−0.0015 (9)−0.0054 (12)−0.0061 (10)
C190.0443 (10)0.0300 (9)0.0351 (10)0.0021 (8)0.0006 (9)−0.0004 (8)
C200.0473 (12)0.0483 (12)0.0392 (13)0.0044 (10)0.0049 (10)0.0056 (10)
C210.0447 (11)0.0433 (12)0.0530 (14)−0.0024 (10)−0.0003 (11)0.0055 (10)
C220.0640 (15)0.0478 (12)0.0400 (12)0.0167 (11)0.0151 (11)0.0054 (10)
N10.0696 (13)0.0394 (10)0.0368 (10)0.0049 (9)−0.0004 (10)−0.0135 (8)
N20.0418 (9)0.0414 (9)0.0406 (10)0.0006 (7)−0.0076 (8)−0.0047 (8)
N30.0812 (18)0.0944 (19)0.0363 (13)0.0063 (14)0.0041 (11)0.0020 (12)
N40.0595 (13)0.0613 (14)0.097 (2)−0.0217 (12)−0.0013 (14)0.0057 (15)
N50.0509 (11)0.0526 (12)0.0458 (11)0.0136 (9)0.0108 (10)0.0073 (9)
N60.121 (3)0.084 (2)0.0696 (18)0.0470 (19)0.0373 (18)0.0380 (16)
O10.0578 (11)0.0560 (10)0.0563 (11)−0.0089 (8)−0.0123 (9)−0.0163 (9)
O20.0552 (9)0.0330 (7)0.0404 (8)−0.0026 (6)−0.0050 (7)−0.0110 (6)
O30.0606 (11)0.0517 (9)0.0498 (10)0.0029 (9)−0.0094 (9)−0.0077 (8)
O40.093 (2)0.091 (2)0.097 (2)0.0319 (15)−0.0022 (16)0.0075 (18)

Geometric parameters (Å, °)

C1—C51.500 (3)C11—H11A0.930
C1—C121.511 (3)C13—O21.213 (3)
C1—C61.556 (3)C13—N21.337 (3)
C1—C21.583 (3)C14—C151.380 (3)
C2—C191.508 (3)C14—C191.394 (3)
C2—C131.560 (3)C14—N21.406 (3)
C2—C31.576 (3)C15—C161.384 (4)
C3—C211.482 (3)C15—H15A0.930
C3—C201.487 (3)C16—C171.369 (4)
C3—C41.535 (3)C16—H16A0.930
C4—N51.328 (3)C17—C181.394 (4)
C4—C51.354 (3)C17—H17A0.930
C5—C221.406 (3)C18—C191.380 (3)
C6—O11.220 (3)C18—H18A0.930
C6—N11.337 (3)C20—N31.126 (4)
C7—C81.374 (4)C21—N41.130 (3)
C7—C121.395 (3)C22—N61.133 (4)
C7—N11.404 (3)N1—H10.860
C8—C91.381 (5)N2—H20.860
C8—H8A0.930N5—H5A0.90 (1)
C9—C101.382 (5)N5—H5B0.90 (1)
C9—H9A0.930O3—H3A0.85 (1)
C10—C111.392 (4)O3—H3B0.85 (1)
C10—H10A0.930O4—H4A0.85 (1)
C11—C121.380 (3)O4—H4B0.85 (1)
C5—C1—C12120.04 (17)C12—C11—H11A120.4
C5—C1—C6110.78 (17)C10—C11—H11A120.4
C12—C1—C6101.37 (17)C11—C12—C7119.2 (2)
C5—C1—C2101.12 (16)C11—C12—C1132.7 (2)
C12—C1—C2113.93 (17)C7—C12—C1108.0 (2)
C6—C1—C2109.64 (16)O2—C13—N2127.39 (19)
C19—C2—C13102.28 (17)O2—C13—C2125.34 (19)
C19—C2—C3118.76 (17)N2—C13—C2107.25 (16)
C13—C2—C3106.69 (16)C15—C14—C19122.0 (2)
C19—C2—C1116.18 (17)C15—C14—N2128.3 (2)
C13—C2—C1107.57 (15)C19—C14—N2109.72 (18)
C3—C2—C1104.56 (15)C14—C15—C16117.2 (2)
C21—C3—C20106.75 (19)C14—C15—H15A121.4
C21—C3—C4110.04 (18)C16—C15—H15A121.4
C20—C3—C4112.24 (19)C17—C16—C15121.9 (2)
C21—C3—C2113.62 (17)C17—C16—H16A119.1
C20—C3—C2111.58 (18)C15—C16—H16A119.1
C4—C3—C2102.72 (16)C16—C17—C18120.6 (2)
N5—C4—C5130.6 (2)C16—C17—H17A119.7
N5—C4—C3119.7 (2)C18—C17—H17A119.7
C5—C4—C3109.72 (18)C19—C18—C17118.6 (3)
C4—C5—C22121.9 (2)C19—C18—H18A120.7
C4—C5—C1114.59 (18)C17—C18—H18A120.7
C22—C5—C1123.10 (19)C18—C19—C14119.7 (2)
O1—C6—N1127.3 (2)C18—C19—C2132.2 (2)
O1—C6—C1124.5 (2)C14—C19—C2107.96 (18)
N1—C6—C1108.2 (2)N3—C20—C3179.4 (3)
C8—C7—C12122.4 (3)N4—C21—C3178.0 (3)
C8—C7—N1127.5 (2)N6—C22—C5178.1 (3)
C12—C7—N1110.0 (2)C6—N1—C7111.51 (19)
C7—C8—C9117.3 (3)C6—N1—H1124.2
C7—C8—H8A121.3C7—N1—H1124.2
C9—C8—H8A121.3C13—N2—C14112.51 (18)
C8—C9—C10121.7 (3)C13—N2—H2123.7
C8—C9—H9A119.1C14—N2—H2123.7
C10—C9—H9A119.1C4—N5—H5A119.9 (19)
C9—C10—C11120.1 (3)C4—N5—H5B123 (3)
C9—C10—H10A119.9H5A—N5—H5B115 (3)
C11—C10—H10A119.9H3A—O3—H3B105.1 (17)
C12—C11—C10119.1 (2)H4A—O4—H4B104.8 (17)
C5—C1—C2—C19158.77 (17)C9—C10—C11—C120.7 (4)
C12—C1—C2—C19−71.0 (2)C10—C11—C12—C7−2.2 (4)
C6—C1—C2—C1941.8 (2)C10—C11—C12—C1179.7 (2)
C5—C1—C2—C13−87.37 (18)C8—C7—C12—C112.5 (4)
C12—C1—C2—C1342.8 (2)N1—C7—C12—C11−175.0 (2)
C6—C1—C2—C13155.61 (17)C8—C7—C12—C1−179.0 (2)
C5—C1—C2—C325.79 (18)N1—C7—C12—C13.5 (3)
C12—C1—C2—C3155.99 (17)C5—C1—C12—C1148.3 (4)
C6—C1—C2—C3−91.22 (18)C6—C1—C12—C11170.6 (2)
C19—C2—C3—C21−37.6 (3)C2—C1—C12—C11−71.8 (3)
C13—C2—C3—C21−152.32 (18)C5—C1—C12—C7−130.0 (2)
C1—C2—C3—C2193.88 (19)C6—C1—C12—C7−7.7 (2)
C19—C2—C3—C2083.1 (2)C2—C1—C12—C7110.0 (2)
C13—C2—C3—C20−31.6 (2)C19—C2—C13—O2−173.2 (2)
C1—C2—C3—C20−145.38 (18)C3—C2—C13—O2−47.8 (3)
C19—C2—C3—C4−156.44 (18)C1—C2—C13—O263.9 (3)
C13—C2—C3—C488.85 (18)C19—C2—C13—N25.2 (2)
C1—C2—C3—C4−24.95 (19)C3—C2—C13—N2130.60 (18)
C21—C3—C4—N572.4 (3)C1—C2—C13—N2−117.67 (18)
C20—C3—C4—N5−46.3 (3)C19—C14—C15—C16−0.5 (4)
C2—C3—C4—N5−166.3 (2)N2—C14—C15—C16−179.2 (2)
C21—C3—C4—C5−106.6 (2)C14—C15—C16—C170.1 (4)
C20—C3—C4—C5134.7 (2)C15—C16—C17—C180.4 (5)
C2—C3—C4—C514.7 (2)C16—C17—C18—C19−0.4 (5)
N5—C4—C5—C22−3.5 (4)C17—C18—C19—C140.0 (4)
C3—C4—C5—C22175.3 (2)C17—C18—C19—C2175.9 (3)
N5—C4—C5—C1−176.4 (2)C15—C14—C19—C180.4 (4)
C3—C4—C5—C12.4 (3)N2—C14—C19—C18179.4 (2)
C12—C1—C5—C4−144.5 (2)C15—C14—C19—C2−176.4 (2)
C6—C1—C5—C497.9 (2)N2—C14—C19—C22.6 (3)
C2—C1—C5—C4−18.3 (2)C13—C2—C19—C18179.1 (3)
C12—C1—C5—C2242.7 (3)C3—C2—C19—C1862.1 (4)
C6—C1—C5—C22−74.9 (3)C1—C2—C19—C18−64.0 (3)
C2—C1—C5—C22168.9 (2)C13—C2—C19—C14−4.6 (2)
C5—C1—C6—O1−41.8 (3)C3—C2—C19—C14−121.6 (2)
C12—C1—C6—O1−170.3 (2)C1—C2—C19—C14112.2 (2)
C2—C1—C6—O168.9 (3)O1—C6—N1—C7171.7 (2)
C5—C1—C6—N1138.14 (19)C1—C6—N1—C7−8.3 (3)
C12—C1—C6—N19.6 (2)C8—C7—N1—C6−174.1 (3)
C2—C1—C6—N1−111.1 (2)C12—C7—N1—C63.2 (3)
C12—C7—C8—C9−1.1 (4)O2—C13—N2—C14174.4 (2)
N1—C7—C8—C9176.0 (3)C2—C13—N2—C14−4.0 (2)
C7—C8—C9—C10−0.5 (5)C15—C14—N2—C13179.9 (2)
C8—C9—C10—C110.7 (5)C19—C14—N2—C131.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.092.905 (2)158
N2—H2···O3i0.862.223.032 (3)157
O3—H3A···O1ii0.85 (1)2.00 (2)2.795 (3)157 (4)
O3—H3B···N6iii0.85 (1)2.22 (5)2.834 (3)129 (5)
O3—H3B···O4iv0.85 (1)2.62 (3)3.381 (4)149 (5)
O4—H4A···N4v0.85 (1)2.38 (3)3.171 (5)155 (7)
O4—H4B···N30.85 (1)2.68 (4)3.392 (4)142 (6)
N5—H5A···O3vi0.90 (1)1.97 (1)2.860 (3)175 (3)
N5—H5B···O4vi0.90 (1)2.17 (1)3.061 (4)171 (3)

Symmetry codes: (i) −x+1/2, y−1/2, z−1/2; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) −x, −y+1, z+1/2; (v) −x, −y, z+1/2; (vi) −x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2273).

References

  • Akai, S., Tsujino, T., Akiyama, E., Tanimoto, K., Naka, T. & Kita, Y. (2004). J. Org. Chem.69, 2478–2486. [PubMed]
  • Bruker (2001). SMART (Version. 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Gallagher, G., Lavanchi, P. G., Wilson, J. W., Hieble, J. & Demmarinis, R. M. (1985). J. Med. Chem.28, 1533–1536. [PubMed]
  • Nagata, R., Tokunaga, T., Hume, W., Umezone, T., Okazaki, U., Ueki, Y., Kumagai, K., Hourai, S., Nagamine, J., Seki, H., Taiji, M. & Noguchi, H. (2001). J. Med. Chem.44, 4641–4649. [PubMed]
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Williams, R. M. & Cox, R. (2003). Acc. Chem. Res.36, 127–139. [PubMed]
  • Zaveri, N. T., Jiang, F., Olsen, C. M., Deschamps, J. R., Parrish, D., Polgar, W. & Toll, L. (2004). J. Med. Chem.47, 2973–2976. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography