PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m371–m372.
Published online 2008 January 18. doi:  10.1107/S1600536807060734
PMCID: PMC2960424

(Acetyl­acetonato-κ2 O,O′)­aqua­[salicyl­aldehyde nicotinoylhydrazonato(2−)-κ3 O,N,O′]manganese(III)

Abstract

The MnIII atom in the title complex, [Mn(C13H9N3O2)(C5H7O2)(H2O)], is coordinated by three donors from a dianionic ligand, salicylaldehyde nicotylhydrazone, two O atoms from an acetyl­acetonate anion and a water mol­ecule in a distorted octa­hedral geometry. There is an extended two-dimensional supra­molecular motif resulting from O—H(...)N hydrogen bonds between the coordinated water mol­ecule and a hydrazine N or pyridine N atom, and from C—H(...)O hydrogen bonds between a CH group and the phenolate O atom.

Related literature

For general background, see: Janiak (2003 [triangle]); Kitagawa et al. (2004 [triangle]); Graham & Pike (2000 [triangle]); Niu et al. (2005 [triangle]); Adams et al. (2000 [triangle]); Ranford et al. (1998 [triangle]); Batten & Robson (1998 [triangle]); Hagrman et al. (1999 [triangle]). For related structures, see: Kessissoglou et al. (2002 [triangle]); Sailaja et al. (2003 [triangle]); Zhang et al. (2001 [triangle]); Clérac et al. (2002 [triangle]); Mitra et al. (2006 [triangle]); Hoshino et al. (2003 [triangle]); Nakamura et al. (2001 [triangle]); Liu et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m371-scheme1.jpg

Experimental

Crystal data

  • [Mn(C13H9N3O2)(C5H7O2)(H2O)]
  • M r = 411.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m371-efi1.jpg
  • a = 17.462 (2) Å
  • b = 9.5286 (18) Å
  • c = 11.529 (3) Å
  • β = 106.798 (5)°
  • V = 1836.4 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.75 mm−1
  • T = 293 (2) K
  • 0.58 × 0.49 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999 [triangle]) T min = 0.598, T max = 0.932
  • 17468 measured reflections
  • 4203 independent reflections
  • 3380 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.105
  • S = 1.06
  • 4203 reflections
  • 246 parameters
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: TEXRAY (Molecular Structure Corporation, 1999 [triangle]); cell refinement: TEXRAY; data reduction: TEXSAN (Mol­ecular Structure Corporation, 1999 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEX (McArdle, 1995 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807060734/xu2362sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060734/xu2362Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the National Natural Science Foundation of China (grant Nos. 20431010 and 20171012).

supplementary crystallographic information

Comment

Metal-organic supramolecular complexes with various fascinating topologies have been studied widely for their versatile chemical and physical properties and potential applications as functional materials (Janiak, 2003; Kitagawa et al., 2004). Self-assembly based on molecular building blocks has become an effective approach to construct these functional materials. In the development of supramolecular chemistry, hydrogen-bonding plays an important role in selfassembling multi-dimensional metal-organic supramolecular frameworks or networks (Graham & Pike, 2000). Some nicotylhydrazone derivatives and aroylhydrazone derivatives had led to a number of complexes with multidimensional structures or extended multidimensional structures. (Niu et al., 2005; Adams et al., 2000; Ranford et al., 1998). The syntheses and characterization of these complexes has been an area of rapid growth in recent years.(Batten & Robson, 1998; Hagrman et al., 1999). Herein, we report the synthesis and crystal structure of the title manganese(III) complex.

Complex (I) crystallizes in the space group P21/c. The crystal structure reveals that complex (I) consists of a neutral Mn(C13H9N3O2)(C5H7O2)(H2O) unit. As shown in Fig. 1, compound (I) is composed of one salicylaldehyde-nicotylhydrazone dianion, one acetylacetone anion, one coordinated water molecule and one MnIII cations. The manganese(III) atom exists in a distorted octahedral environment defined by one carbonyl oxygen atom O1, one hydrazine nitrogen atom N3 and one phenolate oxygen atom O2 of the deprotonated Schiff base ligand, the two oxygen atoms (O3 and O4) of the acetylacetonate (acac) anion and one oxygen atom O5 of the coordinated water molecule. O1, N3, O2 and O4 atoms are located in the equatorial plane, while O3 and O5 occupy the axial positions. The bond length of Mn1—O1 (carbonyl oxygen) in complex (I) is 1.935 (2) Å, while the corresponding values in the similar known complexes are between 1.959 (2) and 1.971 (1)Å (Kessissoglou et al., 2002). The bond length of Mn1—O2(phenolic oxygen) in complex (I) is 1.886 (2) Å, while the corresponding values in the known complexes are between 1.844 (3) and 1.923 (3)Å (Sailaja et al., 2003; Zhang et al., 2001; Clérac et al., 2002) The bond length of Mn1—N3(hydrazone nitrogen) in complex (I) is 1.972 (2) Å, which is similar to the corresponding values 1.968 (4)–1.999 (7)Å of the known complexes (Mitra et al., 2006; Hoshino et al., 2003). The bond distance of axial Mn1—O3 (acac-) (2.122 (2) Å) is 0.20 Å longer than that of the equatorial Mn1—O4(acac-) (1.920 (1) Å), O3 and O4 being from the same acac- ligand. This typical Jahn-Teller elongation along the z axis of the manganese(III) ion was also observed in some manganese(III) compounds (Nakamura et al., 2001; Liu et al., 2001). The title complex molecules are linked by hydrogen bonds (Table 1) into a two-dimensional supramolecular network. As illustrated in Fig. 2, one complex molecule connected to two neighboring complex molecules via hydrogen bonds of O—H(H2O)···N(hydrazine) type and C—H···O(phenolate) type, resulting in an extended chain along the c axis. These hydrogen bonds are marked with green color in Fig. 2. A t the same time, the neighboring extended chains are combined by OH(H2O)···N(pyridine) hydrogen bonds with pink color, forming an extended two-dimensional network.

Experimental

A DMF solution of salicylaldehyde-nicotylhydrazone ligand (24 mg, 0.1 mmol) and a methanol solution of Mn(acac)3 (35 mg, 0.1 mmol) were mixed and stirred for 3 h. The resulting solution was then left for aerial evaporation at room temperature. Black block crystals of (I), suitable in size for single-crystal X-ray diffraction, appeared after two weeks.

Refinement

Water H atoms and the H atom attached to C16 in acac- group were founded in a difference Fourier map, and then allowed to ride on the O and C16 atoms with Uiso=1.5Ueq(O) and Uiso=1.2Ueq(C), respectively. The other H atoms were placed in idealized positions and treated as riding with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic and 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3 atoms.

Figures

Fig. 1.
The molecular structure of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.
Fig. 2.
A plot illustrating extended two-dimensional structure of (I), hydrogen bonds are drawn as dashed lines. H atoms not-involved in hydrogen bonding have been omitted.
Fig. 3.
The extended two-dimensional net-work connected by hydrogen bonds, which are drawn as dashed lines. H atoms not-involved in hydrogen bonding have been omitted.

Crystal data

[Mn(C13H9N3O2)(C5H7O2)(H2O)]F000 = 848
Mr = 411.29Dx = 1.488 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17468 reflections
a = 17.462 (2) Åθ = 3.2–27.5º
b = 9.5286 (18) ŵ = 0.75 mm1
c = 11.529 (3) ÅT = 293 (2) K
β = 106.798 (5)ºBlock, black
V = 1836.4 (6) Å30.58 × 0.49 × 0.10 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer4203 independent reflections
Radiation source: fine-focus sealed tube3380 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.047
T = 293(2) Kθmax = 27.5º
ω scansθmin = 3.2º
Absorption correction: multi-scan(TEXRAY; Molecular Structure Corporation, 1999)h = −22→22
Tmin = 0.598, Tmax = 0.932k = −12→12
17468 measured reflectionsl = −12→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.105  w = 1/[σ2(Fo2) + (0.056P)2 + 0.2426P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4203 reflectionsΔρmax = 0.40 e Å3
246 parametersΔρmin = −0.26 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.249798 (18)0.57337 (3)0.43657 (2)0.03214 (11)
O10.34284 (9)0.48904 (15)0.40574 (12)0.0409 (3)
O20.15564 (9)0.67021 (14)0.43678 (12)0.0384 (3)
O30.19055 (11)0.37673 (16)0.40212 (15)0.0509 (4)
O40.27874 (10)0.52725 (15)0.60578 (12)0.0419 (3)
O50.32467 (9)0.77095 (14)0.50465 (13)0.0405 (3)
H5B0.30690.82610.55500.061*
H5C0.37090.73560.54720.061*
N10.53617 (13)0.3198 (2)0.3250 (2)0.0579 (5)
N20.29071 (10)0.57484 (16)0.21251 (15)0.0343 (4)
N30.23512 (10)0.63091 (16)0.26725 (13)0.0302 (3)
C10.47353 (14)0.3815 (2)0.3467 (2)0.0463 (5)
H1B0.47320.38950.42690.056*
C20.40938 (13)0.43433 (19)0.25884 (19)0.0373 (4)
C30.41031 (18)0.4214 (3)0.1385 (2)0.0572 (7)
H3A0.36770.45340.07530.069*
C40.4756 (2)0.3604 (3)0.1159 (3)0.0716 (9)
H4A0.47810.35180.03670.086*
C50.53676 (18)0.3125 (3)0.2098 (3)0.0658 (7)
H5A0.58100.27300.19280.079*
C60.34313 (12)0.50249 (19)0.29342 (17)0.0343 (4)
C70.18497 (12)0.7207 (2)0.20497 (17)0.0337 (4)
H7A0.18850.74350.12830.040*
C80.12392 (12)0.78839 (19)0.24536 (17)0.0332 (4)
C90.11051 (12)0.75715 (18)0.35741 (17)0.0331 (4)
C100.04471 (14)0.8204 (2)0.3828 (2)0.0440 (5)
H10A0.03410.80060.45560.053*
C11−0.00431 (15)0.9108 (2)0.3023 (2)0.0490 (6)
H11A−0.04820.94990.32070.059*
C120.01056 (15)0.9450 (2)0.1939 (2)0.0511 (6)
H12A−0.02241.00810.14070.061*
C130.07387 (14)0.8852 (2)0.1662 (2)0.0436 (5)
H13A0.08430.90860.09390.052*
C140.1360 (2)0.1594 (3)0.4358 (3)0.0801 (9)
H14A0.12460.15350.34930.120*
H14B0.08670.16410.45690.120*
H14C0.16550.07790.47240.120*
C150.18474 (15)0.2891 (2)0.4808 (2)0.0499 (6)
C160.22056 (18)0.3043 (2)0.6060 (2)0.0586 (7)
H16A0.21000.23000.65700.070*
C170.26526 (15)0.4158 (2)0.6601 (2)0.0449 (5)
C180.3042 (2)0.4170 (3)0.7940 (2)0.0728 (9)
H18A0.36100.42750.80980.109*
H18B0.29300.33040.82840.109*
H18C0.28360.49400.82970.109*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.03229 (18)0.03714 (17)0.02695 (16)0.00286 (12)0.00849 (12)0.00486 (11)
O10.0407 (9)0.0492 (8)0.0326 (7)0.0147 (7)0.0103 (6)0.0088 (6)
O20.0359 (8)0.0488 (8)0.0325 (7)0.0063 (6)0.0132 (6)0.0050 (6)
O30.0556 (11)0.0453 (8)0.0487 (9)−0.0095 (7)0.0102 (8)−0.0057 (7)
O40.0515 (10)0.0417 (7)0.0303 (7)−0.0014 (7)0.0081 (6)0.0076 (6)
O50.0358 (8)0.0441 (7)0.0390 (7)−0.0016 (6)0.0068 (6)0.0023 (6)
N10.0410 (12)0.0618 (12)0.0654 (13)0.0187 (10)0.0068 (10)−0.0026 (11)
N20.0316 (9)0.0408 (8)0.0320 (8)0.0060 (7)0.0114 (7)0.0021 (7)
N30.0281 (9)0.0343 (7)0.0285 (7)0.0030 (6)0.0085 (7)0.0023 (6)
C10.0413 (13)0.0515 (11)0.0425 (12)0.0088 (10)0.0065 (10)−0.0033 (10)
C20.0362 (11)0.0349 (9)0.0403 (11)0.0063 (8)0.0105 (9)−0.0002 (8)
C30.0633 (17)0.0670 (15)0.0411 (12)0.0315 (13)0.0148 (12)0.0041 (11)
C40.082 (2)0.0829 (19)0.0559 (15)0.0405 (17)0.0301 (15)0.0051 (14)
C50.0575 (18)0.0671 (15)0.0785 (19)0.0266 (13)0.0286 (15)−0.0014 (14)
C60.0331 (11)0.0338 (9)0.0349 (10)0.0011 (8)0.0083 (8)−0.0006 (8)
C70.0321 (10)0.0404 (9)0.0286 (9)0.0020 (8)0.0085 (8)0.0036 (8)
C80.0309 (10)0.0344 (9)0.0334 (9)0.0025 (8)0.0079 (8)0.0000 (8)
C90.0298 (10)0.0333 (9)0.0350 (9)−0.0024 (7)0.0077 (8)−0.0033 (8)
C100.0406 (13)0.0499 (11)0.0453 (11)0.0033 (10)0.0187 (10)−0.0017 (9)
C110.0386 (13)0.0503 (12)0.0609 (14)0.0122 (10)0.0188 (11)−0.0025 (11)
C120.0458 (14)0.0495 (12)0.0545 (14)0.0175 (10)0.0088 (11)0.0057 (10)
C130.0438 (13)0.0443 (10)0.0417 (11)0.0098 (9)0.0108 (10)0.0044 (9)
C140.083 (2)0.0524 (14)0.104 (2)−0.0233 (15)0.026 (2)−0.0089 (15)
C150.0479 (14)0.0353 (10)0.0687 (15)−0.0019 (9)0.0199 (12)−0.0020 (10)
C160.0756 (19)0.0434 (11)0.0589 (15)−0.0054 (12)0.0228 (14)0.0148 (11)
C170.0494 (14)0.0463 (11)0.0412 (11)0.0074 (10)0.0166 (10)0.0130 (9)
C180.101 (3)0.0729 (17)0.0410 (14)−0.0015 (16)0.0143 (15)0.0194 (12)

Geometric parameters (Å, °)

Mn1—O21.8860 (14)C5—H5A0.9300
Mn1—O41.9195 (14)C7—C81.434 (3)
Mn1—O11.9354 (14)C7—H7A0.9300
Mn1—N31.9718 (16)C8—C91.410 (3)
Mn1—O32.1216 (16)C8—C131.410 (3)
Mn1—O52.2971 (14)C9—C101.401 (3)
O1—C61.303 (2)C10—C111.370 (3)
O2—C91.315 (2)C10—H10A0.9300
O3—C151.259 (3)C11—C121.388 (3)
O4—C171.289 (2)C11—H11A0.9300
O5—H5B0.9021C12—C131.361 (3)
O5—H5C0.8812C12—H12A0.9300
N1—C11.327 (3)C13—H13A0.9300
N1—C51.333 (4)C14—C151.505 (3)
N2—C61.300 (3)C14—H14A0.9600
N2—N31.407 (2)C14—H14B0.9600
N3—C71.285 (2)C14—H14C0.9600
C1—C21.370 (3)C15—C161.405 (4)
C1—H1B0.9300C16—C171.358 (3)
C2—C31.398 (3)C16—H16A0.9713
C2—C61.478 (3)C17—C181.497 (4)
C3—C41.370 (4)C18—H18A0.9600
C3—H3A0.9300C18—H18B0.9600
C4—C51.361 (4)C18—H18C0.9600
C4—H4A0.9300
O2—Mn1—O494.83 (6)O1—C6—C2116.94 (17)
O2—Mn1—O1169.05 (6)N3—C7—C8124.64 (17)
O4—Mn1—O195.92 (6)N3—C7—H7A117.7
O2—Mn1—N390.07 (6)C8—C7—H7A117.7
O4—Mn1—N3172.13 (7)C9—C8—C13119.71 (18)
O1—Mn1—N379.02 (6)C9—C8—C7122.60 (17)
O2—Mn1—O393.11 (7)C13—C8—C7117.64 (17)
O4—Mn1—O387.65 (6)O2—C9—C10119.25 (17)
O1—Mn1—O389.36 (7)O2—C9—C8123.10 (17)
N3—Mn1—O398.24 (6)C10—C9—C8117.64 (18)
O2—Mn1—O590.51 (6)C11—C10—C9121.3 (2)
O4—Mn1—O583.32 (6)C11—C10—H10A119.4
O1—Mn1—O588.73 (6)C9—C10—H10A119.4
N3—Mn1—O590.50 (6)C10—C11—C12121.0 (2)
O3—Mn1—O5170.53 (6)C10—C11—H11A119.5
C6—O1—Mn1112.73 (12)C12—C11—H11A119.5
C9—O2—Mn1130.91 (12)C13—C12—C11119.3 (2)
C15—O3—Mn1125.99 (15)C13—C12—H12A120.3
C17—O4—Mn1130.61 (15)C11—C12—H12A120.3
Mn1—O5—H5B115.4C12—C13—C8121.0 (2)
Mn1—O5—H5C102.5C12—C13—H13A119.5
H5B—O5—H5C107.1C8—C13—H13A119.5
C1—N1—C5117.0 (2)C15—C14—H14A109.5
C6—N2—N3108.27 (16)C15—C14—H14B109.5
C7—N3—N2116.70 (15)H14A—C14—H14B109.5
C7—N3—Mn1127.66 (13)C15—C14—H14C109.5
N2—N3—Mn1115.42 (11)H14A—C14—H14C109.5
N1—C1—C2124.5 (2)H14B—C14—H14C109.5
N1—C1—H1B117.8O3—C15—C16124.6 (2)
C2—C1—H1B117.8O3—C15—C14116.8 (2)
C1—C2—C3117.4 (2)C16—C15—C14118.6 (2)
C1—C2—C6119.89 (19)C17—C16—C15125.3 (2)
C3—C2—C6122.7 (2)C17—C16—H16A118.4
C4—C3—C2118.3 (2)C15—C16—H16A116.2
C4—C3—H3A120.8O4—C17—C16125.7 (2)
C2—C3—H3A120.8O4—C17—C18113.7 (2)
C5—C4—C3119.7 (2)C16—C17—C18120.6 (2)
C5—C4—H4A120.1C17—C18—H18A109.5
C3—C4—H4A120.1C17—C18—H18B109.5
N1—C5—C4123.0 (2)H18A—C18—H18B109.5
N1—C5—H5A118.5C17—C18—H18C109.5
C4—C5—H5A118.5H18A—C18—H18C109.5
N2—C6—O1124.14 (18)H18B—C18—H18C109.5
N2—C6—C2118.88 (17)
O2—Mn1—O1—C6−10.2 (4)C3—C4—C5—N11.1 (5)
O4—Mn1—O1—C6−179.52 (14)N3—N2—C6—O1−1.1 (3)
N3—Mn1—O1—C6−5.61 (13)N3—N2—C6—C2−178.91 (16)
O3—Mn1—O1—C692.91 (14)Mn1—O1—C6—N25.6 (3)
O5—Mn1—O1—C6−96.37 (14)Mn1—O1—C6—C2−176.53 (13)
O4—Mn1—O2—C9164.44 (17)C1—C2—C6—N2167.1 (2)
O1—Mn1—O2—C9−4.9 (4)C3—C2—C6—N2−12.4 (3)
N3—Mn1—O2—C9−9.40 (17)C1—C2—C6—O1−10.8 (3)
O3—Mn1—O2—C9−107.66 (17)C3—C2—C6—O1169.6 (2)
O5—Mn1—O2—C981.10 (17)N2—N3—C7—C8179.71 (17)
O2—Mn1—O3—C15−92.8 (2)Mn1—N3—C7—C8−6.0 (3)
O4—Mn1—O3—C151.9 (2)N3—C7—C8—C9−3.1 (3)
O1—Mn1—O3—C1597.8 (2)N3—C7—C8—C13179.7 (2)
N3—Mn1—O3—C15176.63 (19)Mn1—O2—C9—C10−177.10 (14)
O2—Mn1—O4—C1795.0 (2)Mn1—O2—C9—C84.3 (3)
O1—Mn1—O4—C17−87.0 (2)C13—C8—C9—O2−178.60 (19)
O3—Mn1—O4—C172.1 (2)C7—C8—C9—O24.2 (3)
O5—Mn1—O4—C17−175.0 (2)C13—C8—C9—C102.8 (3)
C6—N2—N3—C7171.09 (17)C7—C8—C9—C10−174.42 (19)
C6—N2—N3—Mn1−3.94 (19)O2—C9—C10—C11−179.5 (2)
O2—Mn1—N3—C710.08 (18)C8—C9—C10—C11−0.8 (3)
O1—Mn1—N3—C7−169.04 (18)C9—C10—C11—C12−1.3 (4)
O3—Mn1—N3—C7103.23 (18)C10—C11—C12—C131.4 (4)
O5—Mn1—N3—C7−80.43 (18)C11—C12—C13—C80.6 (4)
O2—Mn1—N3—N2−175.53 (13)C9—C8—C13—C12−2.7 (3)
O1—Mn1—N3—N25.34 (12)C7—C8—C13—C12174.6 (2)
O3—Mn1—N3—N2−82.38 (13)Mn1—O3—C15—C16−3.4 (4)
O5—Mn1—N3—N293.96 (13)Mn1—O3—C15—C14176.78 (19)
C5—N1—C1—C21.7 (4)O3—C15—C16—C171.0 (4)
N1—C1—C2—C30.2 (4)C14—C15—C16—C17−179.2 (3)
N1—C1—C2—C6−179.3 (2)Mn1—O4—C17—C16−4.8 (4)
C1—C2—C3—C4−1.6 (4)Mn1—O4—C17—C18175.20 (19)
C6—C2—C3—C4178.0 (2)C15—C16—C17—O43.3 (4)
C2—C3—C4—C51.0 (5)C15—C16—C17—C18−176.7 (3)
C1—N1—C5—C4−2.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5B···N2i0.902.143.013 (2)164
O5—H5C···N1ii0.881.922.784 (3)165
C7—H7A···O2iii0.932.273.160 (2)160
C13—H13A···O2iii0.932.593.390 (3)145

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2362).

References

  • Adams, H., Fenton, D. E., Minardi, G., Mura, E., Pistuddi, A. M. & Solinas, C. (2000). Inorg. Chem. Commun.3, 24–28.
  • Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed.37, 1460–1494.
  • Clérac, R., Miyasaka, H., Yamashita, M. & Coulon, C. (2002). J. Am. Chem. Soc.124, 12837–12844. [PubMed]
  • Graham, P. M. & Pike, R. D. (2000). Inorg. Chem.39, 5121–5132. [PubMed]
  • Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed.38, 2638–2684. [PubMed]
  • Hoshino, N., Ito, T., Nihei, M. & Oshio, H. (2003). Inorg. Chem. Commun.6, 377–380.
  • Janiak, C. (2003). Dalton Trans. pp. 2781–2804.
  • Kessissoglou, D. P., Bodwin, J. J., Kampf, J., Dendrinou-Samara, C. & Pecoraro, V. L. (2002). Inorg. Chim. Acta, 331, 73–80.
  • Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [PubMed]
  • Liu, S.-X., Lin, S., Lin, B.-Z., Lin, C.-C. & Huang, J.-Q. (2001). Angew. Chem. Int. Ed.40, 1084–1087. [PubMed]
  • McArdle, P. (1995). J. Appl. Cryst.28, 65.
  • Mitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997–2003.
  • Molecular Structure Corporation (1999). TEXRAY and TEXSAN. Versions 1.10. MSC, The Woodlands, Texas, USA.
  • Nakamura, T., Niwa, K., Usugi, S., Asada, H., Fujiwara, M. & Matsushita, T. (2001). Polyhedron, 20, 191–201.
  • Niu, Y.-Y., Song, Y.-L., Hou, H.-W. & Zhu, Y. (2005). Inorg. Chem.44, 2553–2559. [PubMed]
  • Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem.37, 1226–1231. [PubMed]
  • Sailaja, S., Rajender Reddy, K., Rajasekharan, M. V., Hureau, C., Riviére, E., Cano, J. & Girerd, J. J. (2003). Inorg. Chem.42, 180–186. [PubMed]
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Zhang, K.-L., Xu, Y., Zheng, C.-G., Zhang, Y., Wang, Z. & You, X.-Z. (2001). Inorg. Chim. Acta, 318, 61–66.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography