PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m332.
Published online 2008 January 11. doi:  10.1107/S1600536808000287
PMCID: PMC2960422

This article has been retractedRetraction in: Acta Crystallogr Sect E Struct Rep Online. 2012 July 01; 68(Pt 7): e14    See also: PMC Retraction Policy

Bis[N-(8-quinol­yl)pyridine-2-carbox­amidato-κ3 N,N′,N′′]manganese(III) perchlorate monohydrate

Abstract

The MnIII ion in the title complex, [Mn(C15H10N3O)2]ClO4·H2O, is coordinated meridionally by six N atoms from two tridentate N-(8-quinol­yl)pyridine-2-carboxamidate ligands, yielding a distorted octa­hedral coordination geometry. The two ligands are nearly planar and their mean planes are almost perpendicular, with a dihedral angle of 86.7 (2)°.

Related literature

For related literature, see: Dutta et al. (2000 [triangle]); Ni et al. (2006 [triangle]); Ni (2007 [triangle]); Zhang et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m332-scheme1.jpg

Experimental

Crystal data

  • [Mn(C15H10N3O)2]ClO4·H2O
  • M r = 668.93
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m332-efi1.jpg
  • a = 9.2314 (5) Å
  • b = 12.9987 (10) Å
  • c = 12.0126 (5) Å
  • α = 95.786 (1)°
  • β = 91.592 (2)°
  • γ = 90.486 (1)°
  • V = 1433.48 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.61 mm−1
  • T = 293 (2) K
  • 0.28 × 0.22 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.847, T max = 0.898
  • 5004 measured reflections
  • 4920 independent reflections
  • 3731 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.189
  • S = 1.00
  • 4920 reflections
  • 406 parameters
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Bruker, 2001 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000287/cf2173sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000287/cf2173Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Education Department of Shandong Province for research and development projects (J06A55).

supplementary crystallographic information

Comment

To date, many symmetrical pyridinecarboxamide ligands and their coordination complexes have been synthesized (Ni et al., 2006). However, unsymetrical pyridinecarboxamide ligands are limited (Zhang et al., 2001). Here we report a new MnIII complex, [Mn(C15H10N3O)2]ClO4.H2O, (I), containing two unsymmetrical pyridinecarboxamide tridentate ligands, 8-(pyridine-2-carboxamido)quinoline.

The structure and labeling scheme for the title complex are shown in Figure 1. The title compound comprises a [MnIII(pcq)2]+ (Hpcq = 8-(pyridine-2-carboxamido)quinoline) cation and a ClO4- anion as well as an uncoordinated water molecule. The MnIII ion in the cation is coordinated by six nitrogen atoms from two mer pcq- ligands, giving a distorted octahedral coordination environment. The C—O, Cpyridine—N, and Ccarboxy—N bond distances in the title complex agree well with those reported for other complexes containing pyridinecarboxamide ligands (Dutta et al., 2000; Ni, 2007) and with the ligand precursor Hpcq (Zhang et al., 2001). The average Mn—Npyridine bond distance is 1.914 Å and the average Mn—Namide bond length is 2.028 Å. The two pcq- ligands in (I) are both nearly planar, and the two mean planes are almost perpendicular, with a dihedral angle of 86.7 (2)°. There is probably a hydrogen bond between water and perchlorate, but the H atoms of the water molecule could not be located.

Experimental

The material Hpcq was synthesized according to the literature (Zhang et al., 2001). Solid Hpcq (500 mg, 2 mmol) was added to a methanol/water solution (20 ml, MeOH/H2O = 4:1 v/v) of MnIII acetate (326 mg, 1 mmol) containing 0.5 ml pyridine The mixture was stirred for about 0.5 h. The mixture was then filtered and the resulting solution was kept at room temperature for about one week, giving rise to pink block crystals. Yield: 50%. Elemental analysis [found (calculated)] for C30H22ClMnN6O7: C 53.65 (53.79), H 3.35 (3.31), N 12.39% (12.55%).

Refinement

The H atoms of the water molecule were not located. H atoms bound to C atoms were positioned geometrically, with C—H = 0.93 Å and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Mn(C15H10N3O)2]ClO4·H2OZ = 2
Mr = 668.93F000 = 684
Triclinic, P1Dx = 1.550 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.2314 (5) ÅCell parameters from 4924 reflections
b = 12.9987 (10) Åθ = 3.1–25.0º
c = 12.0126 (5) ŵ = 0.61 mm1
α = 95.786 (1)ºT = 293 (2) K
β = 91.592 (2)ºBlock, pink
γ = 90.486 (1)º0.28 × 0.22 × 0.18 mm
V = 1433.48 (15) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer4920 independent reflections
Radiation source: fine-focus sealed tube3731 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
T = 293(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 3.1º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −10→10
Tmin = 0.847, Tmax = 0.898k = −15→15
5004 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.189  w = 1/[σ2(Fo2) + (0.1288P)2 + 0.5125P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4920 reflectionsΔρmax = 0.59 e Å3
406 parametersΔρmin = −0.67 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn11.01973 (6)0.24180 (4)0.24794 (4)0.0384 (2)
Cl10.51979 (17)0.11333 (15)0.74568 (15)0.0909 (5)
N20.9935 (4)0.3931 (3)0.3109 (3)0.0518 (9)
N60.9288 (4)0.1667 (3)0.3589 (3)0.0475 (8)
N51.0500 (4)0.0939 (3)0.1904 (3)0.0495 (8)
N41.1108 (4)0.2804 (3)0.1203 (3)0.0527 (9)
N10.8270 (4)0.2620 (3)0.1907 (3)0.0531 (9)
C211.1198 (5)0.0783 (4)0.0992 (4)0.0574 (12)
C80.8606 (5)0.4385 (4)0.2926 (4)0.0551 (11)
C300.9270 (5)0.0526 (3)0.3384 (3)0.0490 (10)
C220.9966 (5)0.0084 (3)0.2476 (3)0.0493 (10)
O11.1111 (5)0.5442 (3)0.4079 (4)0.0856 (12)
O21.1503 (5)−0.0117 (3)0.0524 (3)0.0824 (11)
N31.2070 (4)0.2650 (3)0.3217 (3)0.0475 (8)
C201.1555 (5)0.1885 (4)0.0605 (3)0.0564 (12)
C290.8639 (5)0.2116 (4)0.4435 (3)0.0538 (11)
H29A0.86550.28310.45980.065*
C101.1042 (5)0.4462 (4)0.3671 (4)0.0581 (11)
C260.8586 (5)−0.0202 (4)0.4046 (4)0.0599 (12)
C90.7712 (5)0.3641 (4)0.2238 (4)0.0542 (11)
C191.2233 (6)0.1982 (6)−0.0317 (4)0.0755 (16)
H19A1.25550.1408−0.07630.091*
C161.1330 (6)0.3830 (5)0.0897 (4)0.0669 (14)
H16A1.09920.43980.13460.080*
C30.5529 (7)0.3131 (6)0.1275 (5)0.0885 (19)
H3A0.45790.32600.10540.106*
C40.6317 (6)0.3950 (5)0.1946 (4)0.0683 (14)
C270.7876 (5)0.0330 (5)0.4904 (4)0.0675 (14)
H27A0.7353−0.00390.53850.081*
C250.8682 (6)−0.1357 (4)0.3793 (5)0.0711 (15)
H25A0.8232−0.17870.42550.085*
C10.7488 (6)0.1890 (5)0.1282 (4)0.0686 (14)
H1A0.78610.12350.10910.082*
C70.8077 (6)0.5402 (4)0.3300 (4)0.0646 (13)
H7A0.86760.58610.37480.078*
C151.3127 (5)0.1909 (4)0.3235 (4)0.0577 (11)
H15A1.29690.12480.28780.069*
C280.7912 (6)0.1470 (5)0.5094 (4)0.0690 (14)
H28A0.74110.17800.56980.083*
C240.9389 (7)−0.1761 (4)0.2934 (6)0.0758 (16)
H24A0.9466−0.24730.27730.091*
C111.2259 (5)0.3692 (4)0.3732 (4)0.0572 (11)
C121.3534 (6)0.3970 (5)0.4287 (5)0.0775 (16)
H12A1.36950.46350.46360.093*
C171.2026 (7)0.3964 (6)−0.0036 (5)0.0810 (17)
H17A1.22040.4610−0.02770.097*
C231.0035 (6)−0.1057 (4)0.2258 (4)0.0623 (12)
H23A1.0534−0.13310.16360.075*
C20.6104 (7)0.2143 (6)0.0929 (5)0.094 (2)
H2A0.55520.16660.04650.112*
C181.2466 (7)0.3029 (7)−0.0623 (5)0.091 (2)
H18A1.29600.3086−0.12780.109*
C141.4402 (6)0.2164 (5)0.3784 (5)0.0732 (15)
H14A1.51380.16840.38240.088*
C131.4573 (7)0.3211 (6)0.4304 (6)0.0904 (19)
H13A1.54490.33880.46790.108*
C50.5839 (7)0.5006 (6)0.2351 (5)0.0828 (18)
H5A0.49080.51980.21490.099*
C60.6675 (7)0.5712 (5)0.3000 (5)0.0816 (17)
H6A0.63360.63680.32330.098*
O30.4151 (9)0.0401 (7)0.7756 (7)0.182 (3)
O60.6578 (6)0.0767 (6)0.7331 (6)0.142 (2)
O50.4784 (9)0.1497 (12)0.6457 (8)0.258 (7)
O40.5174 (12)0.2145 (7)0.8072 (9)0.220 (4)
O1W0.7670 (12)0.3638 (8)0.8063 (11)0.254 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0473 (4)0.0421 (4)0.0250 (3)0.0047 (2)0.0057 (2)−0.0016 (2)
Cl10.0727 (9)0.1085 (13)0.0909 (11)0.0234 (9)0.0159 (8)0.0013 (9)
N20.067 (2)0.0450 (19)0.0427 (19)0.0049 (17)0.0095 (17)−0.0011 (16)
N60.052 (2)0.056 (2)0.0325 (17)0.0015 (16)0.0008 (14)−0.0011 (15)
N50.052 (2)0.062 (2)0.0333 (17)0.0084 (17)0.0005 (14)−0.0034 (16)
N40.053 (2)0.076 (3)0.0299 (17)0.0037 (18)0.0016 (14)0.0087 (17)
N10.058 (2)0.069 (2)0.0309 (17)0.0032 (18)0.0042 (15)0.0008 (16)
C210.062 (3)0.068 (3)0.038 (2)0.019 (2)−0.0008 (19)−0.013 (2)
C80.068 (3)0.058 (3)0.041 (2)0.008 (2)0.011 (2)0.011 (2)
C300.049 (2)0.058 (3)0.040 (2)−0.0046 (19)−0.0094 (17)0.0057 (19)
C220.050 (2)0.051 (2)0.044 (2)0.0004 (19)−0.0096 (18)−0.0038 (19)
O10.106 (3)0.055 (2)0.090 (3)0.000 (2)−0.003 (2)−0.0202 (19)
O20.107 (3)0.089 (3)0.0469 (19)0.027 (2)0.0061 (19)−0.0160 (18)
N30.050 (2)0.059 (2)0.0334 (17)−0.0011 (16)0.0063 (14)0.0023 (15)
C200.048 (2)0.091 (4)0.029 (2)0.007 (2)−0.0020 (16)−0.004 (2)
C290.058 (3)0.068 (3)0.035 (2)0.006 (2)0.0039 (18)0.003 (2)
C100.068 (3)0.054 (3)0.051 (3)−0.003 (2)0.007 (2)−0.006 (2)
C260.057 (3)0.074 (3)0.050 (3)−0.015 (2)−0.012 (2)0.018 (2)
C90.064 (3)0.063 (3)0.037 (2)0.013 (2)0.0147 (19)0.0106 (19)
C190.067 (3)0.127 (5)0.031 (2)0.003 (3)0.010 (2)0.000 (3)
C160.068 (3)0.093 (4)0.042 (3)0.005 (3)0.003 (2)0.020 (3)
C30.065 (4)0.130 (6)0.071 (4)0.024 (4)−0.006 (3)0.015 (4)
C40.066 (3)0.093 (4)0.051 (3)0.023 (3)0.009 (2)0.023 (3)
C270.056 (3)0.101 (4)0.049 (3)−0.011 (3)0.001 (2)0.026 (3)
C250.075 (4)0.068 (3)0.073 (4)−0.014 (3)−0.007 (3)0.026 (3)
C10.065 (3)0.083 (4)0.054 (3)0.014 (3)−0.008 (2)−0.009 (3)
C70.087 (4)0.053 (3)0.056 (3)0.014 (2)0.017 (2)0.010 (2)
C150.068 (3)0.063 (3)0.043 (2)0.008 (2)0.003 (2)0.008 (2)
C280.063 (3)0.106 (4)0.041 (2)0.004 (3)0.012 (2)0.014 (3)
C240.087 (4)0.051 (3)0.089 (4)−0.005 (3)−0.013 (3)0.009 (3)
C110.067 (3)0.058 (3)0.045 (2)−0.009 (2)0.006 (2)−0.002 (2)
C120.073 (4)0.083 (4)0.071 (3)−0.018 (3)−0.006 (3)−0.015 (3)
C170.082 (4)0.114 (5)0.051 (3)−0.006 (3)0.003 (3)0.027 (3)
C230.073 (3)0.055 (3)0.056 (3)0.005 (2)−0.006 (2)−0.005 (2)
C20.078 (4)0.133 (6)0.064 (4)0.009 (4)−0.021 (3)−0.013 (4)
C180.077 (4)0.154 (7)0.042 (3)0.002 (4)0.014 (3)0.014 (4)
C140.052 (3)0.099 (4)0.067 (3)0.008 (3)−0.011 (2)0.005 (3)
C130.069 (4)0.108 (5)0.091 (4)0.000 (3)−0.015 (3)−0.003 (4)
C50.077 (4)0.109 (5)0.068 (4)0.032 (4)0.011 (3)0.030 (3)
C60.096 (4)0.082 (4)0.072 (4)0.026 (3)0.026 (3)0.021 (3)
O30.164 (7)0.217 (8)0.172 (7)−0.050 (6)0.047 (5)0.050 (6)
O60.109 (4)0.176 (6)0.146 (5)0.063 (4)0.029 (4)0.034 (5)
O50.138 (7)0.51 (2)0.150 (7)0.019 (9)0.001 (5)0.155 (10)
O40.280 (11)0.141 (6)0.231 (10)0.035 (7)0.097 (8)−0.047 (6)
O1W0.240 (11)0.150 (7)0.350 (16)−0.003 (7)0.052 (10)−0.088 (9)

Geometric parameters (Å, °)

Mn1—N41.878 (3)C9—C41.398 (7)
Mn1—N11.919 (4)C19—C181.461 (10)
Mn1—N31.928 (4)C19—H19A0.930
Mn1—N61.935 (4)C16—C171.334 (7)
Mn1—N52.000 (4)C16—H16A0.930
Mn1—N22.054 (4)C3—C21.421 (10)
Cl1—O61.371 (5)C3—C41.447 (9)
Cl1—O51.380 (8)C3—H3A0.930
Cl1—O31.429 (7)C4—C51.485 (9)
Cl1—O41.442 (8)C27—C281.477 (8)
N2—C101.353 (6)C27—H27A0.930
N2—C81.388 (6)C25—C241.303 (9)
N6—C291.286 (6)C25—H25A0.930
N6—C301.478 (6)C1—C21.388 (8)
N5—C211.286 (6)C1—H1A0.930
N5—C221.454 (6)C7—C61.406 (9)
N4—C201.402 (6)C7—H7A0.930
N4—C161.433 (7)C15—C141.355 (7)
N1—C11.342 (6)C15—H15A0.930
N1—C91.450 (6)C28—H28A0.930
C21—O21.283 (6)C24—C231.422 (8)
C21—C201.585 (8)C24—H24A0.930
C8—C91.445 (7)C11—C121.364 (7)
C8—C71.446 (7)C12—C131.384 (9)
C30—C221.360 (6)C12—H12A0.930
C30—C261.449 (6)C17—C181.411 (10)
C22—C231.481 (6)C17—H17A0.930
O1—C101.318 (6)C23—H23A0.930
N3—C151.378 (6)C2—H2A0.930
N3—C111.438 (6)C18—H18A0.930
C20—C191.304 (6)C14—C131.444 (9)
C29—C281.391 (7)C14—H14A0.930
C29—H29A0.930C13—H13A0.930
C10—C111.516 (7)C5—C61.362 (9)
C26—C271.369 (8)C5—H5A0.930
C26—C251.505 (8)C6—H6A0.930
N4—Mn1—N194.61 (15)C8—C9—N1119.6 (4)
N4—Mn1—N385.35 (14)C20—C19—C18117.4 (6)
N1—Mn1—N3162.60 (16)C20—C19—H19A121.3
N4—Mn1—N6165.15 (17)C18—C19—H19A121.3
N1—Mn1—N686.06 (15)C17—C16—N4119.4 (6)
N3—Mn1—N698.42 (14)C17—C16—H16A120.3
N4—Mn1—N588.36 (16)N4—C16—H16A120.3
N1—Mn1—N5100.50 (16)C2—C3—C4124.5 (5)
N3—Mn1—N596.89 (15)C2—C3—H3A117.7
N6—Mn1—N576.95 (15)C4—C3—H3A117.7
N4—Mn1—N292.24 (16)C9—C4—C3111.5 (5)
N1—Mn1—N281.17 (16)C9—C4—C5119.0 (6)
N3—Mn1—N281.45 (16)C3—C4—C5129.4 (5)
N6—Mn1—N2102.51 (15)C26—C27—C28122.3 (5)
N5—Mn1—N2178.18 (15)C26—C27—H27A118.8
O6—Cl1—O5106.8 (5)C28—C27—H27A118.9
O6—Cl1—O3115.4 (5)C24—C25—C26120.8 (5)
O5—Cl1—O3110.0 (6)C24—C25—H25A119.6
O6—Cl1—O4112.3 (6)C26—C25—H25A119.6
O5—Cl1—O493.5 (8)N1—C1—C2117.8 (6)
O3—Cl1—O4116.3 (5)N1—C1—H1A121.1
C10—N2—C8121.8 (4)C2—C1—H1A121.1
C10—N2—Mn1120.3 (3)C6—C7—C8121.4 (5)
C8—N2—Mn1117.9 (3)C6—C7—H7A119.3
C29—N6—C30120.0 (4)C8—C7—H7A119.3
C29—N6—Mn1123.0 (3)C14—C15—N3118.6 (5)
C30—N6—Mn1116.8 (3)C14—C15—H15A120.7
C21—N5—C22121.4 (4)N3—C15—H15A120.7
C21—N5—Mn1116.1 (3)C29—C28—C27124.8 (5)
C22—N5—Mn1122.5 (3)C29—C28—H28A117.6
C20—N4—C16126.2 (4)C27—C28—H28A117.6
C20—N4—Mn1106.4 (3)C25—C24—C23116.6 (5)
C16—N4—Mn1127.4 (3)C25—C24—H24A121.7
C1—N1—C9122.6 (4)C23—C24—H24A121.7
C1—N1—Mn1124.1 (4)C12—C11—N3119.2 (5)
C9—N1—Mn1113.4 (3)C12—C11—C10120.7 (5)
O2—C21—N5123.9 (5)N3—C11—C10120.1 (4)
O2—C21—C20129.2 (4)C11—C12—C13116.4 (5)
N5—C21—C20106.9 (4)C11—C12—H12A121.8
N2—C8—C9107.8 (4)C13—C12—H12A121.8
N2—C8—C7130.8 (5)C16—C17—C18113.3 (6)
C9—C8—C7121.4 (5)C16—C17—H17A123.3
C22—C30—C26114.5 (4)C18—C17—H17A123.3
C22—C30—N6118.1 (4)C24—C23—C22124.4 (5)
C26—C30—N6127.4 (4)C24—C23—H23A117.8
C30—C22—N5105.6 (4)C22—C23—H23A117.8
C30—C22—C23120.3 (4)C1—C2—C3120.2 (6)
N5—C22—C23134.1 (4)C1—C2—H2A119.9
C15—N3—C11123.4 (4)C3—C2—H2A119.9
C15—N3—Mn1124.0 (3)C17—C18—C19127.4 (5)
C11—N3—Mn1112.6 (3)C17—C18—H18A116.3
C19—C20—N4116.3 (5)C19—C18—H18A116.3
C19—C20—C21121.5 (5)C15—C14—C13117.4 (5)
N4—C20—C21122.1 (4)C15—C14—H14A121.3
N6—C29—C28116.1 (5)C13—C14—H14A121.3
N6—C29—H29A121.9C12—C13—C14125.0 (5)
C28—C29—H29A121.9C12—C13—H13A117.5
O1—C10—N2129.2 (5)C14—C13—H13A117.5
O1—C10—C11125.3 (4)C6—C5—C4124.3 (6)
N2—C10—C11105.5 (4)C6—C5—H5A117.9
C27—C26—C30109.2 (5)C4—C5—H5A117.8
C27—C26—C25127.4 (5)C5—C6—C7116.8 (6)
C30—C26—C25123.4 (5)C5—C6—H6A121.6
C4—C9—C8117.0 (5)C7—C6—H6A121.6
C4—C9—N1123.3 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2173).

References

  • Bruker (2001). SAINT-Plus, SADABS and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dutta, S. K., Beckmann, U., Bill, E., Weyhermuller, T. & Wieghardt, K. (2000). Inorg. Chem 39, 3355–3364. [PubMed]
  • Ni, Z.-H. (2007). Acta Cryst. E63, m2531–m2532.
  • Ni, Z. H., Kou, H. Z., Zhang, L. F., Ge, C., Wang, R. J. & Cui, A. L. (2006). J. Chem. Crystallogr 36, 465–472.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, J.-Y., Liu, Q., Xu, Y., Zhang, Y., You, X.-Z. & Guo, Z.-J. (2001). Acta Cryst. C57, 109–110. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography