PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o433.
Published online 2008 January 11. doi:  10.1107/S1600536807058114
PMCID: PMC2960419

1-[Bicyclo­[4.2.0]octa-1(6),2,4-trien-3-yl]-3-(but-3-en­yl)imidazolium bromide

Abstract

In the title compound, C15H17N2 +·Br, the cyclo­butene and benzene rings are coplanar. The dihedral angle between the benzene and imidazolium rings is 21.2 (3)°. In the crystal structure, the C15H17N2 + and Br ions are linked into a zigzag chain along the b axis by C—H(...)Br hydrogen bonds, and weak C—H(...)π inter­actions involving the benzene ring of a screw-related cation.

Related literature

For related literature, see: Farona (1996 [triangle]); Tan & Arnold (1988 [triangle]); Zhang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o433-scheme1.jpg

Experimental

Crystal data

  • C15H17N2 +·Br
  • M r = 305.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o433-efi1.jpg
  • a = 9.342 (3) Å
  • b = 11.775 (3) Å
  • c = 13.695 (7) Å
  • β = 107.76 (3)°
  • V = 1434.7 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.85 mm−1
  • T = 291 (2) K
  • 0.30 × 0.25 × 0.25 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 2811 measured reflections
  • 2665 independent reflections
  • 1479 reflections with I > 2σ(I)
  • R int = 0.005
  • 3 standard reflections every 300 reflections intensity decay: 5.6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.144
  • S = 0.94
  • 2665 reflections
  • 166 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: DIFRAC (Gabe & White, 1993 [triangle]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807058114/ci2512sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807058114/ci2512Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (grant No. 20574046) for financial support.

supplementary crystallographic information

Comment

Benzocyclobutene (BCB) based polymeric materials have attracted considerable attention and research interest in the area of electronic applications because of their excellent properties such as low dielectric constant, low dissipation factor, low moisture picking-up, film planarization and high thermal-stability (Farona, 1996; Tan & Arnold, 1988). A number of BCB derivatives, such as BCB-alkyne imide, bis-BCB imide, organosiloxane bridged bis-BCB have been synthesized (Zhang et al., 2005). We report here the crystal structure of the title imidazolium BCB compound, (I), which was synthesized by alkylation of N-imidazolybenzocyclobutene and 4-bromo-1-butene.

The cyclobutene and benzene rings coplanar, with a dihedral angle of 0.7 (4)°. The dihedral angle between the benzene and imidazolium rings is 21.2 (3)°. In the crystal structure of (I), the cations and the bromide ions are linked via C—H···Br hydrogen bonds, and weak C—H···π interactions involving the C13—H13A group and the benzene of a screw-related molecule (Table 1), forming a zigzag chain along the b axis.

Experimental

4-(N-imidazolyl)benzocyclobutene (5 mmol, 850 mg) and 4-bromo-1-butene (6 mmol, 810 mg,) were placed in a two-necked round-bottomed flask under a nitrogen atmosphere and the mixture was heated at 353 K for 5 h. A light-yellow solid was obtained after the surplus 4-bromo-1-butene was removed under vacuum. Colourless crystals of compound (I) were obtained by recrystallization of the solid from methanol-ethyl ether (1:4 v/v) solution (yield: 1.278 g). 1 H NMR (400 MHz, CDCl3): δ 10.80 (s, 1H), 7.74 (s, 1H), 7.61 (s, 1H), 7.49 (2 d, J = 7.6 Hz, 1H), 7.42 (s, 1H), 7.21 (d, J = 7.6 Hz, 1H), 5.86–5.95 (m, 1H), 5.11 (d, J = 14.4 Hz, 2H), 4.75 (t, 2H), 3.23 (s, 4H,), 2.76 (q, 2H); 13C NMR (100 MHz, CDCl3): δ 148.22, 147.96, 135.57, 133.50, 132.65, 124.46, 123.48, 121.12, 120.97, 119.49, 116.80, 49.30, 34.60, 29.54, 29.46 p.p.m..

Refinement

H atoms were positioned geometrically and refined in the riding-model approximation with C—H = 0.93 or 0.97 Å. A common free variable for Uiso was refined for the aromatic H atoms, and similarly for the methylene and methyl H atoms.

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering.

Crystal data

C15H17N2+·BrF000 = 624
Mr = 305.22Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 24 reflections
a = 9.342 (3) Åθ = 4.8–9.6º
b = 11.775 (3) ŵ = 2.85 mm1
c = 13.695 (7) ÅT = 291 (2) K
β = 107.76 (3)ºBlock, colourless
V = 1434.7 (10) Å30.30 × 0.25 × 0.25 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.005
Radiation source: fine-focus sealed tubeθmax = 25.5º
Monochromator: graphiteθmin = 2.3º
T = 291(2) Kh = −11→10
ω/2θ scansk = 0→14
Absorption correction: nonel = −6→16
2811 measured reflections3 standard reflections
2665 independent reflections every 300 reflections
1479 reflections with I > 2σ(I) intensity decay: 5.6%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052  w = 1/[σ2(Fo2) + (0.0861P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.144(Δ/σ)max = 0.001
S = 0.94Δρmax = 0.43 e Å3
2665 reflectionsΔρmin = −0.54 e Å3
166 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.66118 (7)0.64239 (5)0.09316 (5)0.0607 (3)
N10.2215 (4)0.5236 (3)0.1168 (3)0.0378 (9)
N20.3774 (5)0.3946 (4)0.1964 (3)0.0480 (11)
C10.1596 (5)0.6215 (4)0.0546 (4)0.0367 (11)
C20.0346 (6)0.6742 (5)0.0674 (4)0.0457 (13)
H2−0.01010.64440.11380.068 (7)*
C3−0.0254 (6)0.7700 (5)0.0128 (4)0.0502 (14)
H3−0.10960.80560.02150.068 (7)*
C40.0439 (6)0.8108 (5)−0.0547 (4)0.0476 (13)
C50.0411 (7)0.9018 (5)−0.1342 (5)0.0641 (16)
H5A0.06020.9781−0.10650.104 (8)*
H5B−0.04700.8995−0.19420.104 (8)*
C60.1832 (7)0.8406 (5)−0.1486 (5)0.0650 (17)
H6A0.16690.8072−0.21590.104 (8)*
H6B0.27420.8860−0.12840.104 (8)*
C70.1696 (6)0.7568 (5)−0.0671 (4)0.0462 (13)
C80.2313 (6)0.6611 (4)−0.0145 (4)0.0449 (13)
H80.31470.6251−0.02400.068 (7)*
C90.3604 (5)0.4861 (4)0.1372 (4)0.0429 (12)
H90.43470.51850.11400.068 (7)*
C100.1468 (6)0.4519 (5)0.1661 (4)0.0498 (14)
H100.04700.45800.16490.068 (7)*
C110.2442 (6)0.3735 (5)0.2151 (4)0.0516 (14)
H110.22530.31480.25500.068 (7)*
C120.5169 (7)0.3289 (5)0.2334 (5)0.0627 (17)
H12A0.54210.29800.17510.104 (8)*
H12B0.50090.26570.27430.104 (8)*
C130.6461 (7)0.3988 (6)0.2966 (5)0.0742 (19)
H13A0.73260.34970.32290.104 (8)*
H13B0.67150.45470.25250.104 (8)*
C140.6175 (8)0.4578 (8)0.3828 (6)0.089 (2)
H140.58560.41220.42760.068 (7)*
C150.6302 (9)0.5617 (9)0.4043 (7)0.107 (3)
H15A0.66160.61190.36250.104 (8)*
H15B0.60820.58840.46200.104 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0601 (4)0.0638 (4)0.0677 (4)−0.0167 (3)0.0337 (3)−0.0169 (3)
N10.040 (2)0.041 (2)0.033 (2)−0.0065 (19)0.0113 (18)−0.0035 (19)
N20.057 (3)0.042 (3)0.045 (2)0.003 (2)0.016 (2)0.005 (2)
C10.036 (3)0.043 (3)0.029 (2)−0.007 (2)0.006 (2)−0.006 (2)
C20.040 (3)0.064 (4)0.033 (3)−0.001 (3)0.010 (2)−0.002 (3)
C30.041 (3)0.063 (4)0.047 (3)0.011 (3)0.015 (3)−0.003 (3)
C40.046 (3)0.046 (3)0.044 (3)0.004 (3)0.004 (3)0.004 (3)
C50.069 (4)0.059 (4)0.061 (4)0.015 (3)0.014 (3)0.011 (3)
C60.070 (4)0.069 (4)0.056 (4)0.008 (3)0.020 (3)0.017 (3)
C70.047 (3)0.052 (3)0.037 (3)−0.001 (3)0.010 (3)0.002 (3)
C80.040 (3)0.053 (3)0.044 (3)0.003 (2)0.017 (2)−0.001 (3)
C90.039 (3)0.047 (3)0.041 (3)0.001 (2)0.012 (2)0.004 (2)
C100.052 (3)0.057 (3)0.045 (3)−0.017 (3)0.021 (3)−0.001 (3)
C110.058 (4)0.048 (3)0.050 (3)−0.009 (3)0.017 (3)0.007 (3)
C120.069 (4)0.050 (4)0.072 (4)0.014 (3)0.024 (3)0.010 (3)
C130.062 (4)0.076 (5)0.075 (5)0.023 (4)0.008 (4)0.013 (4)
C140.075 (5)0.110 (7)0.067 (5)0.015 (5)−0.002 (4)0.001 (5)
C150.078 (6)0.118 (8)0.104 (7)0.006 (5)−0.003 (5)−0.025 (6)

Geometric parameters (Å, °)

N1—C91.317 (6)C6—H6A0.97
N1—C101.394 (6)C6—H6B0.97
N1—C11.444 (6)C7—C81.368 (7)
N2—C91.329 (6)C8—H80.93
N2—C111.367 (7)C9—H90.93
N2—C121.466 (7)C10—C111.327 (7)
C1—C21.380 (7)C10—H100.93
C1—C81.396 (7)C11—H110.93
C2—C31.374 (7)C12—C131.499 (9)
C2—H20.93C12—H12A0.97
C3—C41.368 (7)C12—H12B0.97
C3—H30.93C13—C141.463 (10)
C4—C71.390 (7)C13—H13A0.97
C4—C51.523 (8)C13—H13B0.97
C5—C61.576 (8)C14—C151.255 (11)
C5—H5A0.97C14—H140.93
C5—H5B0.97C15—H15A0.93
C6—C71.523 (7)C15—H15B0.93
C9—N1—C10107.4 (4)C4—C7—C693.2 (4)
C9—N1—C1125.8 (4)C7—C8—C1114.9 (5)
C10—N1—C1126.8 (4)C7—C8—H8122.6
C9—N2—C11108.4 (5)C1—C8—H8122.6
C9—N2—C12124.5 (5)N1—C9—N2109.2 (4)
C11—N2—C12127.1 (5)N1—C9—H9125.4
C2—C1—C8122.3 (5)N2—C9—H9125.4
C2—C1—N1119.1 (4)C11—C10—N1107.4 (5)
C8—C1—N1118.5 (4)C11—C10—H10126.3
C3—C2—C1121.4 (5)N1—C10—H10126.3
C3—C2—H2119.3C10—C11—N2107.6 (5)
C1—C2—H2119.3C10—C11—H11126.2
C4—C3—C2117.2 (5)N2—C11—H11126.2
C4—C3—H3121.4N2—C12—C13112.6 (5)
C2—C3—H3121.4N2—C12—H12A109.1
C3—C4—C7121.0 (5)C13—C12—H12A109.1
C3—C4—C5145.3 (5)N2—C12—H12B109.1
C7—C4—C593.7 (4)C13—C12—H12B109.1
C4—C5—C686.3 (4)H12A—C12—H12B107.8
C4—C5—H5A114.3C14—C13—C12114.4 (6)
C6—C5—H5A114.3C14—C13—H13A108.7
C4—C5—H5B114.3C12—C13—H13A108.7
C6—C5—H5B114.3C14—C13—H13B108.7
H5A—C5—H5B111.4C12—C13—H13B108.7
C7—C6—C586.7 (4)H13A—C13—H13B107.6
C7—C6—H6A114.2C15—C14—C13128.6 (9)
C5—C6—H6A114.2C15—C14—H14115.7
C7—C6—H6B114.2C13—C14—H14115.7
C5—C6—H6B114.2C14—C15—H15A120.0
H6A—C6—H6B111.4C14—C15—H15B120.0
C8—C7—C4123.2 (5)H15A—C15—H15B120.0
C8—C7—C6143.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9···Br0.932.663.561 (5)165
C11—H11···Bri0.932.873.697 (6)149
C13—H13A···Cg1i0.972.913.735 (7)143

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2512).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farona, M. F. (1996). Prog. Polym. Sci.21, 505–555.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gabe, E. J. & White, P. S. (1993). DIFRAC American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tan, L. S. & Arnold, F. E. (1988). J. Polym. Sci. A Polym. Chem.26, 1819–1834.
  • Zhang, Y., Shen, X. & Huang, F. (2005). Thermochim. Acta, 430, 15–22.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography