PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m278.
Published online 2008 January 4. doi:  10.1107/S1600536807067517
PMCID: PMC2960417

Triaqua­bis(1H-imidazole)bis­[μ2-2-(oxalo­amino)benzoato(3−)]dicopper(II)calcium(II) hepta­hydrate

Abstract

In the title heterotrinuclear coordination compound, [CaCu2(C9H4NO5)2(C3H4N2)2(H2O)3]·7H2O, the Ca2+ cation is in a penta­gonal–bipyramidal geometry and bridges two (1H-imidazole)[2-(oxaloamino)benzoato(3−)]copper(II) units in its equatorial plane. Each CuII atom has a normal square-planar geometry. The mol­ecule has approximate local (non-crystallographic) mirror symmetry and 23 classical hydrogen bonds are found in the crystal structure.

Related literature

For related literature, see: Zang et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m278-scheme1.jpg

Experimental

Crystal data

  • [CaCu2(C9H4NO5)2(C3H4N2)2(H2O)3]·7H2O
  • M r = 895.75
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m278-efi1.jpg
  • a = 6.8988 (9) Å
  • b = 24.011 (3) Å
  • c = 21.161 (3) Å
  • β = 93.511 (3)°
  • V = 3498.7 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.45 mm−1
  • T = 293 (2) K
  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.75, T max = 0.76
  • 17203 measured reflections
  • 6119 independent reflections
  • 3486 reflections with I > 2σ(I)
  • R int = 0.093

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.122
  • S = 0.99
  • 6119 reflections
  • 478 parameters
  • 7 restraints
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067517/si2057sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067517/si2057Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors express their thanks to the Natural Science Foundation of Henan Province for financial support.

supplementary crystallographic information

Comment

The "complex as ligand" approach, i.e. using metal cations to link reactively stable coordination compounds that contain potential bridging blocks, is particularly suitable for designing heteropolymetallic compounds.

In the title compound, CuII adopts square planar geometry, coordinating to the oxamato-N-benzoate and the imidazole ligand to afford a Cu-containing "ligand". CaII then bridges two Cu-ligands together.

The molecule has a local (non-crystallographic) mirror plane containing Ca and three aqueous ligands O11, O12 and O13. In addition, 23 classic hydrogen bonds are found in the structure (Table 1).

Experimental

2-(Oxaloamino)benzoic acid (0.232 g, 1 mmol; Zang et al., 2003) and ? (0.12 g, 3 mmol) were dissolved in water (20 ml). To this solution, CuCl2.2H2O (0.17 g, 1 mmol) and imidazole (0.068 g, 1 mmol) were added. After stirring for an hour, CaCl2 (0.111 g, 1 mmol) was added. The solution was filtered after stirring for another hour. Evaporation of the filtrate gave green single crystals of the title compound after one week. Elemental analysis found (calculatedd) for C24H36CaCu2N6O20 (%): C 32.26 (32.18); H, 3.92 (4.05); N 9.52 (9.38); Ca 4.45 (4.47); Cu 14.14 (14.19). The analyses were performed on a Perkin–Elmer 240 C elemental analyzer. The abundance of Cu is determined by spectrophotometry while the abundance of Ca is obtained from edta titration.

Refinement

The structure was solved by direct methods. All the H atoms were fixed geometrically and constrained with a riding model. d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms; 0.85 Å, Uiso = 1.5Ueq (O) for H2O atoms.

Figures

Fig. 1.
Asymmetric unit of the title compound. Hydrogen atoms are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[CaCu2(C9H4NO5)2(C3H4N2)2(H2O)3]·7H2OF000 = 1840
Mr = 895.75Dx = 1.701 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1959 reflections
a = 6.8988 (9) Åθ = 2.7–20.5º
b = 24.011 (3) ŵ = 1.45 mm1
c = 21.161 (3) ÅT = 293 (2) K
β = 93.511 (3)ºBlock, green
V = 3498.7 (8) Å30.2 × 0.2 × 0.2 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer6119 independent reflections
Radiation source: fine-focus sealed tube3486 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.093
T = 293(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −8→8
Tmin = 0.75, Tmax = 0.76k = −28→28
17203 measured reflectionsl = −15→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.122  w = 1/[σ2(Fo2) + (0.03P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.018
6119 reflectionsΔρmax = 0.59 e Å3
478 parametersΔρmin = −0.48 e Å3
7 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ca10.57052 (19)0.21723 (5)0.36790 (5)0.0305 (3)
Cu10.42034 (12)0.15913 (3)0.10945 (3)0.0365 (2)
Cu20.40057 (12)0.12870 (3)0.60805 (3)0.0303 (2)
N10.4528 (7)0.20197 (17)0.57516 (19)0.0223 (12)
N20.4559 (7)0.22668 (18)0.1570 (2)0.0275 (12)
C10.4976 (10)0.2460 (3)0.0207 (3)0.0400 (17)
C20.4626 (8)0.2899 (2)0.0672 (3)0.0273 (15)
C30.4444 (9)0.3438 (3)0.0446 (3)0.0405 (17)
H30.46110.35020.00190.049*
C40.4034 (10)0.3877 (3)0.0816 (3)0.0460 (19)
H40.39030.42320.06450.055*
C50.3812 (10)0.3788 (3)0.1455 (3)0.0422 (18)
H50.35320.40850.17160.051*
C60.4004 (9)0.3262 (2)0.1701 (3)0.0326 (16)
H60.38560.32060.21310.039*
C70.4416 (8)0.2810 (2)0.1321 (2)0.0260 (14)
C80.4955 (9)0.2169 (2)0.2188 (3)0.0278 (15)
C90.4692 (9)0.1558 (2)0.2362 (3)0.0294 (15)
N30.3548 (9)0.0899 (2)0.0656 (3)0.0497 (16)
C100.3866 (13)0.0390 (3)0.0854 (4)0.070 (3)
H100.45240.02990.12360.084*
N40.3135 (12)0.0024 (3)0.0442 (4)0.091 (3)
H4A0.3211−0.03320.04780.109*
C110.2251 (14)0.0305 (4)−0.0043 (4)0.083 (3)
H110.15790.0154−0.03970.099*
C120.2529 (12)0.0841 (4)0.0084 (4)0.070 (2)
H120.20980.1133−0.01770.084*
C130.4628 (9)0.1977 (3)0.7176 (3)0.0309 (16)
C140.4633 (8)0.2491 (2)0.6780 (3)0.0268 (15)
C150.4633 (9)0.2996 (3)0.7113 (3)0.0417 (18)
H150.47380.29860.75530.050*
C160.4481 (10)0.3508 (3)0.6814 (3)0.0451 (19)
H160.44430.38360.70460.054*
C170.4390 (10)0.3517 (2)0.6165 (3)0.0422 (18)
H170.42910.38570.59540.051*
C180.4441 (9)0.3035 (2)0.5821 (3)0.0352 (17)
H180.43900.30570.53820.042*
C190.4568 (8)0.2516 (2)0.6106 (3)0.0258 (15)
C200.4908 (8)0.2006 (2)0.5142 (3)0.0247 (14)
C210.4483 (9)0.1434 (2)0.4842 (3)0.0305 (16)
N50.3638 (8)0.05199 (19)0.6339 (2)0.0339 (14)
C220.2829 (10)0.0326 (3)0.6870 (3)0.0466 (19)
H220.22440.05440.71690.056*
C230.3020 (12)−0.0230 (3)0.6888 (4)0.061 (2)
H230.2597−0.04660.71990.074*
N60.3947 (9)−0.0383 (2)0.6367 (3)0.0591 (18)
H6A0.4251−0.07160.62610.071*
C240.4289 (10)0.0077 (3)0.6058 (3)0.0468 (19)
H240.49190.00880.56820.056*
O10.5537 (7)0.26049 (18)−0.03227 (19)0.0528 (13)
O20.4690 (7)0.19479 (18)0.03125 (17)0.0415 (12)
O30.4352 (7)0.12114 (15)0.19170 (18)0.0423 (12)
O40.4854 (7)0.14343 (15)0.29325 (19)0.0436 (13)
O50.5407 (6)0.24986 (15)0.26216 (17)0.0347 (11)
O60.5085 (6)0.20180 (16)0.77547 (17)0.0420 (12)
O70.4140 (7)0.15086 (16)0.69376 (17)0.0418 (12)
O80.5517 (6)0.23713 (15)0.47962 (17)0.0315 (10)
O90.4621 (7)0.13889 (15)0.42624 (17)0.0401 (12)
O100.4020 (6)0.10426 (15)0.51994 (17)0.0372 (12)
O110.8768 (6)0.17246 (16)0.37391 (18)0.0466 (12)
H11A0.95240.18910.40090.070*
H11C0.86660.13850.38460.070*
O120.2690 (6)0.26068 (18)0.36776 (18)0.0590 (14)
H12A0.18760.27230.33900.089*
H12B0.20110.25410.39910.089*
O130.7663 (6)0.29991 (15)0.37573 (18)0.0492 (13)
H13A0.85760.29760.35070.074*
H13B0.69650.32820.36630.074*
O140.2004 (10)0.0229 (2)0.2365 (3)0.117 (2)
H14C0.25600.05000.21920.175*
H14D0.17100.02630.27470.175*
O150.1196 (7)0.08557 (18)0.3431 (2)0.0766 (17)
H15A0.22570.10360.34670.115*
H15D0.13560.06620.37670.115*
O160.1226 (8)0.02987 (18)0.4619 (2)0.0818 (18)
H16A0.16590.05510.48710.123*
H16B0.21710.00740.45920.123*
O170.1399 (16)0.0127 (4)0.8469 (4)0.252 (5)
H17C0.0609−0.00570.82260.378*
H17D0.24410.01530.82760.378*
O180.6065 (16)0.0784 (2)0.7980 (4)0.265 (7)
H18C0.66150.04810.78840.397*
H18D0.55110.09870.76930.397*
O190.9605 (13)0.1133 (3)0.8665 (4)0.198 (4)
H19C1.01550.08220.86070.296*
H19D0.90210.12020.83080.296*
O200.6630 (11)0.1175 (2)0.9470 (3)0.149 (3)
H20C0.76360.13340.93430.224*
H20D0.59780.13720.97150.224*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ca10.0384 (9)0.0344 (7)0.0194 (7)−0.0010 (7)0.0075 (6)0.0025 (6)
Cu10.0455 (6)0.0401 (5)0.0245 (4)−0.0008 (4)0.0074 (4)−0.0051 (4)
Cu20.0427 (5)0.0282 (4)0.0208 (4)−0.0017 (4)0.0095 (4)0.0012 (4)
N10.028 (3)0.025 (3)0.015 (3)−0.007 (2)0.004 (2)−0.004 (2)
N20.035 (3)0.028 (3)0.020 (3)0.000 (3)0.007 (2)0.004 (2)
C10.035 (5)0.059 (5)0.026 (4)0.007 (4)0.003 (3)0.012 (4)
C20.021 (4)0.039 (4)0.022 (3)−0.002 (3)0.003 (3)0.011 (3)
C30.038 (5)0.055 (5)0.030 (4)−0.006 (4)0.009 (3)0.007 (4)
C40.050 (5)0.033 (4)0.055 (5)−0.015 (4)0.001 (4)0.020 (4)
C50.053 (5)0.029 (4)0.046 (4)−0.013 (4)0.009 (4)0.001 (3)
C60.033 (4)0.036 (4)0.029 (4)−0.004 (3)0.006 (3)0.007 (3)
C70.025 (4)0.037 (4)0.016 (3)−0.008 (3)0.005 (3)0.006 (3)
C80.026 (4)0.037 (4)0.022 (4)0.006 (3)0.008 (3)0.003 (3)
C90.030 (4)0.029 (4)0.031 (4)0.003 (3)0.009 (3)0.004 (3)
N30.074 (5)0.041 (4)0.035 (3)−0.012 (4)0.010 (3)−0.009 (3)
C100.101 (8)0.063 (6)0.049 (5)−0.011 (6)0.022 (5)−0.025 (5)
N40.126 (8)0.059 (5)0.092 (6)−0.026 (5)0.052 (6)−0.033 (5)
C110.088 (8)0.096 (8)0.065 (6)−0.028 (6)0.015 (6)−0.036 (6)
C120.067 (6)0.086 (6)0.057 (5)−0.005 (5)0.001 (4)−0.022 (5)
C130.015 (4)0.054 (5)0.024 (4)0.001 (3)0.003 (3)−0.005 (3)
C140.025 (4)0.031 (4)0.026 (3)0.005 (3)0.009 (3)−0.003 (3)
C150.039 (5)0.053 (5)0.034 (4)−0.002 (4)0.013 (3)−0.018 (4)
C160.048 (5)0.028 (4)0.061 (5)−0.006 (4)0.018 (4)−0.026 (4)
C170.052 (5)0.021 (3)0.056 (5)−0.005 (3)0.023 (4)0.006 (3)
C180.049 (5)0.030 (4)0.029 (4)−0.005 (3)0.022 (3)−0.004 (3)
C190.019 (4)0.030 (3)0.029 (3)−0.002 (3)0.008 (3)−0.001 (3)
C200.020 (4)0.028 (4)0.027 (4)0.002 (3)0.005 (3)−0.002 (3)
C210.032 (4)0.027 (4)0.033 (4)−0.001 (3)0.003 (3)−0.002 (3)
N50.047 (4)0.026 (3)0.029 (3)0.002 (3)0.010 (3)0.005 (2)
C220.063 (6)0.034 (4)0.044 (5)0.000 (4)0.023 (4)0.003 (4)
C230.069 (6)0.060 (6)0.057 (5)−0.012 (5)0.015 (5)0.025 (4)
N60.075 (5)0.030 (3)0.072 (5)0.002 (3)0.000 (4)0.009 (3)
C240.070 (6)0.030 (4)0.042 (4)0.006 (4)0.012 (4)0.006 (4)
O10.059 (3)0.071 (3)0.031 (2)0.014 (2)0.025 (2)0.010 (2)
O20.056 (3)0.049 (3)0.020 (2)0.004 (3)0.014 (2)−0.003 (2)
O30.073 (4)0.029 (2)0.026 (2)−0.004 (2)0.008 (2)−0.003 (2)
O40.075 (4)0.031 (3)0.026 (2)−0.006 (2)0.004 (2)0.009 (2)
O50.054 (3)0.033 (2)0.017 (2)−0.005 (2)0.004 (2)0.002 (2)
O60.042 (3)0.066 (3)0.018 (2)−0.003 (2)−0.001 (2)−0.002 (2)
O70.066 (4)0.038 (3)0.022 (2)−0.007 (3)0.007 (2)−0.002 (2)
O80.043 (3)0.029 (2)0.024 (2)−0.003 (2)0.012 (2)0.0015 (19)
O90.069 (4)0.034 (3)0.018 (2)−0.009 (2)0.014 (2)−0.0050 (19)
O100.065 (3)0.027 (2)0.022 (2)−0.013 (2)0.017 (2)0.0012 (19)
O110.046 (3)0.049 (3)0.043 (3)0.000 (2)−0.005 (2)−0.003 (2)
O120.046 (3)0.100 (4)0.032 (3)0.019 (3)0.009 (2)0.023 (3)
O130.050 (3)0.046 (3)0.053 (3)0.003 (2)0.016 (2)−0.005 (2)
O140.143 (7)0.134 (5)0.076 (4)0.021 (5)0.033 (4)0.015 (4)
O150.054 (4)0.061 (3)0.114 (5)−0.002 (3)0.003 (3)−0.003 (3)
O160.085 (5)0.069 (3)0.092 (4)−0.007 (3)0.014 (3)−0.041 (3)
O170.297 (13)0.352 (13)0.105 (6)0.155 (11)0.000 (7)−0.011 (8)
O180.451 (18)0.077 (5)0.236 (10)0.052 (7)−0.226 (11)−0.008 (6)
O190.199 (10)0.115 (6)0.277 (12)−0.027 (7)0.002 (8)0.010 (7)
O200.194 (8)0.105 (5)0.160 (7)−0.032 (5)0.098 (6)−0.042 (5)

Geometric parameters (Å, °)

Ca1—O122.327 (4)C13—O61.250 (6)
Ca1—O112.367 (4)C13—O71.269 (6)
Ca1—O52.368 (4)C13—C141.492 (8)
Ca1—O92.395 (4)C14—C151.403 (7)
Ca1—O132.401 (4)C14—C191.425 (7)
Ca1—O42.422 (4)C15—C161.384 (8)
Ca1—O82.423 (4)C15—H150.93
Ca1—H11A2.7672C16—C171.372 (8)
Ca1—H11C2.7894C16—H160.93
Cu1—O21.911 (4)C17—C181.368 (7)
Cu1—N21.917 (4)C17—H170.93
Cu1—N31.943 (5)C18—C191.384 (7)
Cu1—O31.962 (4)C18—H180.93
Cu2—O71.887 (4)C20—O81.234 (6)
Cu2—N11.934 (4)C20—C211.533 (7)
Cu2—N51.943 (5)C21—O91.240 (6)
Cu2—O101.955 (4)C21—O101.260 (6)
N1—C201.332 (6)N5—C241.311 (7)
N1—C191.409 (6)N5—C221.367 (7)
N2—C81.340 (6)C22—C231.342 (8)
N2—C71.409 (6)C22—H220.93
C1—O11.257 (7)C23—N61.358 (8)
C1—O21.266 (7)C23—H230.93
C1—C21.473 (8)N6—C241.313 (7)
C2—C31.383 (7)N6—H6A0.86
C2—C71.406 (7)C24—H240.93
C3—C41.352 (8)O11—H11A0.85
C3—H30.93O11—H11C0.85
C4—C51.385 (8)O12—H12A0.85
C4—H40.93O12—H12B0.85
C5—C61.369 (7)O13—H13A0.85
C5—H50.93O13—H13B0.85
C6—C71.390 (7)O14—H14C0.85
C6—H60.93O14—H14D0.85
C8—O51.237 (6)O15—H15A0.85
C8—C91.526 (7)O15—H15D0.85
C9—O41.241 (6)O16—H16A0.85
C9—O31.268 (6)O16—H16B0.85
N3—C101.305 (8)O17—H17C0.85
N3—C121.371 (8)O17—H17D0.85
C10—N41.316 (8)O18—H18C0.85
C10—H100.93O18—H18D0.85
N4—C111.344 (10)O19—H19C0.85
N4—H4A0.86O19—H19D0.85
C11—C121.326 (10)O20—H20C0.85
C11—H110.93O20—H20D0.85
C12—H120.93
O12—Ca1—O11176.97 (14)C10—N3—C12104.7 (6)
O12—Ca1—O579.88 (14)C10—N3—Cu1128.2 (5)
O11—Ca1—O5103.11 (15)C12—N3—Cu1127.0 (6)
O12—Ca1—O992.60 (16)N3—C10—N4111.3 (8)
O11—Ca1—O985.50 (15)N3—C10—H10124.3
O5—Ca1—O9137.32 (14)N4—C10—H10124.3
O12—Ca1—O1397.38 (15)C10—N4—C11107.9 (7)
O11—Ca1—O1382.84 (14)C10—N4—H4A126.0
O5—Ca1—O1378.91 (14)C11—N4—H4A126.0
O9—Ca1—O13143.71 (14)C12—C11—N4106.2 (8)
O12—Ca1—O498.41 (16)C12—C11—H11126.9
O11—Ca1—O483.26 (14)N4—C11—H11126.9
O5—Ca1—O467.80 (13)C11—C12—N3109.8 (8)
O9—Ca1—O471.98 (13)C11—C12—H12125.1
O13—Ca1—O4139.70 (15)N3—C12—H12125.1
O12—Ca1—O879.15 (14)O6—C13—O7120.3 (6)
O11—Ca1—O897.93 (14)O6—C13—C14118.4 (6)
O5—Ca1—O8148.21 (13)O7—C13—C14121.3 (5)
O9—Ca1—O867.35 (12)C15—C14—C19117.6 (5)
O13—Ca1—O880.40 (13)C15—C14—C13115.7 (5)
O4—Ca1—O8139.05 (14)C19—C14—C13126.7 (5)
O12—Ca1—H11A161.2C16—C15—C14122.7 (6)
O11—Ca1—H11A16.8C16—C15—H15118.6
O5—Ca1—H11A110.2C14—C15—H15118.6
O9—Ca1—H11A90.1C17—C16—C15118.1 (6)
O13—Ca1—H11A70.2C17—C16—H16121.0
O4—Ca1—H11A100.1C15—C16—H16121.0
O8—Ca1—H11A84.8C18—C17—C16121.1 (6)
O12—Ca1—H11C162.1C18—C17—H17119.5
O11—Ca1—H11C16.5C16—C17—H17119.5
O5—Ca1—H11C111.4C17—C18—C19122.3 (6)
O9—Ca1—H11C69.6C17—C18—H18118.9
O13—Ca1—H11C98.5C19—C18—H18118.9
O4—Ca1—H11C74.5C18—C19—N1122.1 (5)
O8—Ca1—H11C95.3C18—C19—C14118.1 (5)
H11A—Ca1—H11C28.9N1—C19—C14119.6 (5)
O2—Cu1—N292.99 (18)O8—C20—N1130.6 (5)
O2—Cu1—N391.0 (2)O8—C20—C21117.1 (5)
N2—Cu1—N3173.2 (2)N1—C20—C21112.3 (5)
O2—Cu1—O3166.89 (19)O9—C21—O10124.5 (5)
N2—Cu1—O385.94 (17)O9—C21—C20117.6 (5)
N3—Cu1—O391.3 (2)O10—C21—C20117.9 (5)
O7—Cu2—N195.17 (17)C24—N5—C22105.5 (5)
O7—Cu2—N589.76 (18)C24—N5—Cu2125.9 (4)
N1—Cu2—N5173.9 (2)C22—N5—Cu2128.4 (4)
O7—Cu2—O10176.73 (19)C23—C22—N5108.5 (6)
N1—Cu2—O1085.29 (16)C23—C22—H22125.8
N5—Cu2—O1089.59 (18)N5—C22—H22125.8
C20—N1—C19122.6 (5)C22—C23—N6107.3 (6)
C20—N1—Cu2112.2 (4)C22—C23—H23126.4
C19—N1—Cu2125.2 (3)N6—C23—H23126.4
C8—N2—C7122.2 (5)C24—N6—C23106.6 (6)
C8—N2—Cu1112.1 (4)C24—N6—H6A126.7
C7—N2—Cu1125.7 (4)C23—N6—H6A126.7
O1—C1—O2119.1 (6)N5—C24—N6112.2 (6)
O1—C1—C2118.0 (6)N5—C24—H24123.9
O2—C1—C2122.9 (5)N6—C24—H24123.9
C3—C2—C7117.9 (6)C1—O2—Cu1128.7 (4)
C3—C2—C1117.0 (5)C9—O3—Cu1110.6 (3)
C7—C2—C1125.1 (5)C9—O4—Ca1117.6 (4)
C4—C3—C2123.1 (6)C8—O5—Ca1119.5 (3)
C4—C3—H3118.5C13—O7—Cu2128.9 (4)
C2—C3—H3118.5C20—O8—Ca1118.6 (3)
C3—C4—C5119.0 (6)C21—O9—Ca1119.1 (4)
C3—C4—H4120.5C21—O10—Cu2111.4 (3)
C5—C4—H4120.5Ca1—O11—H11A109.4
C6—C5—C4120.0 (6)Ca1—O11—H11C111.2
C6—C5—H5120.0H11A—O11—H11C109.3
C4—C5—H5120.0Ca1—O12—H12A134.4
C5—C6—C7121.1 (6)Ca1—O12—H12B116.8
C5—C6—H6119.4H12A—O12—H12B104.4
C7—C6—H6119.4Ca1—O13—H13A109.8
C6—C7—C2118.9 (5)Ca1—O13—H13B109.7
C6—C7—N2121.2 (5)H13A—O13—H13B109.7
C2—C7—N2119.8 (5)H14C—O14—H14D118.3
O5—C8—N2129.7 (5)H15A—O15—H15D97.9
O5—C8—C9117.7 (5)H16A—O16—H16B104.7
N2—C8—C9112.6 (5)H17C—O17—H17D106.1
O4—C9—O3124.6 (5)H18C—O18—H18D120.4
O4—C9—C8117.4 (5)H19C—O19—H19D103.5
O3—C9—C8118.1 (5)H20C—O20—H20D114.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O20—H20D···O2i0.852.112.950 (7)172
O20—H20C···O190.852.092.749 (11)134
O19—H19D···O180.852.342.887 (12)123
O19—H19C···O17ii0.851.912.758 (11)180
O18—H18D···O60.852.503.070 (7)125
O18—H18D···O70.852.203.049 (7)179
O18—H18C···O14iii0.852.042.887 (10)178
O17—H17C···O14iv0.852.172.974 (12)158
O16—H16A···O100.852.102.850 (6)148
O15—H15D···O160.852.012.845 (7)167
O15—H15A···O90.852.423.131 (6)141
O15—H15A···O40.852.383.121 (7)146
O14—H14D···O150.852.082.798 (7)142
O14—H14C···O30.852.213.045 (7)169
O13—H13B···O19v0.852.152.963 (9)160
O13—H13A···O6vi0.851.952.780 (6)164
O12—H12B···O1vii0.851.862.706 (6)180
O12—H12A···O6v0.851.872.725 (5)180
O11—H11C···O15ii0.852.372.778 (6)110
O11—H11A···O1viii0.851.962.780 (6)163
N6—H6A···O9iii0.862.132.958 (7)161
N6—H6A···O4iii0.862.483.018 (6)122
N4—H4A···O20iii0.862.032.888 (9)178

Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) −x+1, −y, −z+1; (iv) −x, −y, −z+1; (v) x−1/2, −y+1/2, z−1/2; (vi) x+1/2, −y+1/2, z−1/2; (vii) x−1/2, −y+1/2, z+1/2; (viii) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2057).

References

  • Bruker (2000). SADABS, SMART, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Westrip, S. P. (2008). publCIF. In preparation.
  • Zang, S.-Q., Tao, R.-J., Wang, Q.-L., Hu, N.-H., Cheng, Y.-X., Niu, J.-Y. & Liao, D.-Z. (2003). Inorg. Chem.42, 761–766. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography