PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o437.
Published online 2008 January 16. doi:  10.1107/S1600536808000457
PMCID: PMC2960415

(2-Butoxy­phen­yl)boronic acid

Abstract

The title compound, 2-(CH3CH2CH2CH2O)C6H4B(OH)2, exists as a centrosymmetric hydrogen-bonded dimer. Dimers are linked via C—H(...)π and π–π [with closest C(...)C contact of 3.540 (3) Å] inter­actions to produce a two-dimensional array.

Related literature

For related literature, see: Rettig & Trotter (1977 [triangle]). For the structures of related ortho-alkoxy­aryl­boronic acids, see: Dabrowski et al. (2006 [triangle]); Serwatowski et al. (2006 [triangle]); Yang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o437-scheme1.jpg

Experimental

Crystal data

  • C10H15BO3
  • M r = 194.03
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o437-efi1.jpg
  • a = 7.4809 (4) Å
  • b = 15.3510 (7) Å
  • c = 9.2824 (4) Å
  • β = 94.299 (4)°
  • V = 1062.98 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 102 (2) K
  • 0.74 × 0.47 × 0.32 mm

Data collection

  • Kuma KM4 CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005 [triangle]) T min = 0.92, T max = 0.97
  • 9363 measured reflections
  • 2419 independent reflections
  • 1924 reflections with I > 2σ(I)
  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.096
  • S = 1.14
  • 2419 reflections
  • 188 parameters
  • All H-atom parameters refined
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond and C—H(...)π geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808000457/tk2240sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000457/tk2240Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Warsaw University of Technology and by the Polish Ministry of Science and Higher Education (grant No. N N205 055633). This work was supported by the Aldrich Chemical Company through the donation of chemicals.

supplementary crystallographic information

Comment

The boronic acid group is known to support supramolecular organization due to intermolecular hydrogen bonding. ortho-Substituents in the aryl ring may significantly influence the structural properties of arylboronic acids. There are a few structures of ortho-alkoxyarylboronic acids available in the literature, i.e. those reported by Yang et al. (2005), Serwatowski et al. (2006) and Dabrowski et al. (2006). We were interested in studying the effect of a longer alkoxy chain on the structural characteristics of the related compound, (I).

The molecular structure of (I) shows the entire molecule to be essentially planar, Fig. 1 & Table 1. The mean planes through the boronic and butoxy groups are approximately co-planar with the aromatic ring. The boronic group has an exo–endo conformation. The endo-oriented OH group forms an intramolecular O—H···O bond with the butoxy-O atom, Table 2. As a result, a nearly planar six-membered ring is formed. This motif has been observed in the structures of related ortho-alkoxyarylboronic acids. Monomeric molecules form hydrogen-bonded centrosymmetric dimers typical of boronic acids (Rettig & Trotter, 1977). The crystal packing in (I) features a parallel arrangement of hydrogen-bonded dimers (Fig. 2). It is stabilized in terms of CH-π interactions between the H7a atom of the butoxy group and the aromatic ring of the adjacent molecule: the distance of H7A from the ring centre is 2.777 (11) Å [symmetry code (ii): 1 - x, 1 - y, 1 - z]. As a result, a centrosymmetric dimeric motif can be distinguished. In addition, weak π–π interactions between a pair of aromatic rings lead to their face-to-face center-to-edge stacking with the shortest contact between two C atoms C1—C1iii = 3.540 (3) Å [symmetry code (iii): -x, 1 - y, 1 - z]. The other two π–π interactions are C1···C2iii = 3.594 (5) Å and C1···C6iii = 3.819 (3) Å. Thus, alternate CH-π and π–π interactions result in formation of a two-dimensional array. In conclusion, the hydrogen-bonded dimeric structure of (I) is typical of boronic acids whereas the unique secondary supramolecular assembly is achieved due to weaker CH-π and π–π interactions.

Experimental

Crystals suitable for the X-ray diffraction analysis were grown by slow evaporation of a solution of the acid (0.2 g) in acetone/water (20 ml, 1:1).

Refinement

All H atoms were located in difference syntheses and refined freely. The range of O—H distances = 0.864 (16) to 0.909 (15) Å and range of C—H distances = 0.954 (11) to 1.030 (10) Å.

Figures

Fig. 1.
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing in (I) showing hydrogen-bonding, C—H–π and π–π interactions as dashed lines.

Crystal data

C10H15BO3F000 = 416
Mr = 194.03Dx = 1.212 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7109 reflections
a = 7.4809 (4) Åθ = 2.3–30.0º
b = 15.3510 (7) ŵ = 0.09 mm1
c = 9.2824 (4) ÅT = 102 (2) K
β = 94.299 (4)ºPrismatic, colourless
V = 1062.98 (9) Å30.74 × 0.47 × 0.32 mm
Z = 4

Data collection

Kuma KM4 CCD diffractometer2419 independent reflections
Radiation source: fine-focus sealed tube1924 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.012
Detector resolution: 8.6479 pixels mm-1θmax = 27.5º
T = 102(2) Kθmin = 2.7º
ω scansh = −9→9
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2005)k = −19→19
Tmin = 0.92, Tmax = 0.97l = −12→11
9363 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.032  w = 1/[σ2(Fo2) + (0.0603P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.35 e Å3
2419 reflectionsΔρmin = −0.16 e Å3
188 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.22865 (11)0.48929 (6)0.46605 (10)0.0187 (2)
C20.15354 (11)0.42983 (6)0.36299 (10)0.0181 (2)
C30.12666 (12)0.34464 (6)0.41017 (11)0.0213 (2)
C40.16761 (12)0.31891 (6)0.55234 (11)0.0242 (2)
C50.23872 (12)0.37970 (7)0.65050 (10)0.0244 (2)
C60.27140 (12)0.46477 (6)0.60865 (10)0.0219 (2)
C70.32860 (12)0.63751 (6)0.51594 (10)0.0196 (2)
C80.34388 (13)0.72079 (6)0.43222 (10)0.0205 (2)
C90.42380 (14)0.79405 (6)0.52702 (11)0.0236 (2)
C100.46998 (16)0.87395 (7)0.44072 (13)0.0324 (3)
B10.09189 (13)0.45600 (7)0.20334 (11)0.0189 (2)
O10.25505 (9)0.57244 (4)0.41655 (7)0.02163 (19)
O20.10984 (9)0.53922 (4)0.15252 (7)0.02530 (19)
O30.01624 (9)0.39432 (4)0.11431 (8)0.0266 (2)
H2O0.157 (2)0.5714 (9)0.2219 (17)0.056 (4)*
H3O−0.0232 (18)0.4136 (9)0.0250 (16)0.055 (4)*
H30.0761 (15)0.3037 (7)0.3414 (12)0.027 (3)*
H40.1452 (14)0.2583 (7)0.5786 (12)0.028 (3)*
H50.2692 (15)0.3638 (8)0.7519 (13)0.034 (3)*
H60.3221 (14)0.5074 (7)0.6758 (12)0.029 (3)*
H7A0.4484 (14)0.6175 (7)0.5556 (10)0.022 (3)*
H7B0.2485 (13)0.6452 (7)0.5943 (11)0.019 (2)*
H8A0.4243 (13)0.7100 (6)0.3536 (11)0.022 (3)*
H8B0.2185 (14)0.7378 (7)0.3876 (12)0.026 (3)*
H9A0.5375 (14)0.7721 (7)0.5801 (12)0.027 (3)*
H9B0.3361 (16)0.8101 (7)0.5990 (12)0.030 (3)*
H10A0.5591 (18)0.8578 (8)0.3676 (15)0.052 (4)*
H10B0.3595 (18)0.8990 (8)0.3852 (14)0.045 (3)*
H10C0.5225 (16)0.9206 (8)0.5042 (13)0.045 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0164 (4)0.0187 (5)0.0210 (5)0.0035 (3)0.0007 (3)0.0005 (4)
C20.0152 (4)0.0192 (5)0.0200 (4)0.0025 (3)0.0009 (3)0.0001 (4)
C30.0193 (5)0.0195 (5)0.0251 (5)0.0011 (4)0.0010 (4)−0.0008 (4)
C40.0241 (5)0.0203 (5)0.0284 (5)0.0027 (4)0.0032 (4)0.0056 (4)
C50.0242 (5)0.0281 (5)0.0209 (5)0.0060 (4)0.0012 (4)0.0053 (4)
C60.0229 (5)0.0233 (5)0.0190 (5)0.0035 (4)−0.0016 (4)−0.0015 (4)
C70.0212 (5)0.0204 (5)0.0167 (4)0.0003 (3)−0.0026 (4)−0.0041 (4)
C80.0223 (5)0.0216 (5)0.0171 (5)0.0011 (4)−0.0020 (4)−0.0013 (4)
C90.0306 (5)0.0193 (5)0.0200 (5)0.0018 (4)−0.0031 (4)−0.0021 (4)
C100.0397 (6)0.0234 (5)0.0332 (6)−0.0038 (5)−0.0032 (5)0.0012 (5)
B10.0179 (5)0.0184 (5)0.0205 (5)0.0009 (4)0.0011 (4)−0.0009 (4)
O10.0289 (4)0.0173 (4)0.0176 (3)−0.0030 (3)−0.0047 (3)−0.0005 (3)
O20.0369 (4)0.0203 (4)0.0176 (4)−0.0063 (3)−0.0057 (3)−0.0002 (3)
O30.0363 (4)0.0194 (4)0.0225 (4)−0.0020 (3)−0.0090 (3)−0.0008 (3)

Geometric parameters (Å, °)

C1—O11.3758 (11)C7—H7B0.983 (10)
C1—C61.3902 (13)C8—C91.5223 (13)
C1—C21.4083 (13)C8—H8A0.994 (10)
C2—C31.3984 (13)C8—H8B1.030 (10)
C2—B11.5710 (13)C9—C101.5189 (14)
C3—C41.3895 (13)C9—H9A1.009 (11)
C3—H30.954 (11)C9—H9B1.001 (12)
C4—C51.3825 (14)C10—H10A1.017 (14)
C4—H40.980 (10)C10—H10B1.017 (13)
C5—C61.3895 (14)C10—H10C0.990 (13)
C5—H50.982 (12)B1—O31.3526 (12)
C6—H60.962 (12)B1—O21.3718 (12)
C7—O11.4408 (10)O2—H2O0.864 (16)
C7—C81.5050 (13)O3—H3O0.909 (15)
C7—H7A0.992 (10)
O1—C1—C6122.72 (9)C7—C8—C9111.76 (7)
O1—C1—C2115.75 (8)C7—C8—H8A108.1 (6)
C6—C1—C2121.53 (9)C9—C8—H8A108.3 (6)
C3—C2—C1116.92 (8)C7—C8—H8B108.7 (6)
C3—C2—B1119.71 (8)C9—C8—H8B110.6 (6)
C1—C2—B1123.30 (8)H8A—C8—H8B109.3 (8)
C4—C3—C2122.46 (9)C10—C9—C8112.75 (8)
C4—C3—H3119.8 (6)C10—C9—H9A108.1 (6)
C2—C3—H3117.8 (6)C8—C9—H9A108.4 (6)
C5—C4—C3118.72 (9)C10—C9—H9B109.8 (6)
C5—C4—H4122.8 (6)C8—C9—H9B108.6 (6)
C3—C4—H4118.5 (6)H9A—C9—H9B109.1 (9)
C4—C5—C6121.15 (9)C9—C10—H10A110.0 (7)
C4—C5—H5120.9 (7)C9—C10—H10B111.4 (7)
C6—C5—H5118.0 (7)H10A—C10—H10B107.6 (11)
C5—C6—C1119.20 (9)C9—C10—H10C111.5 (7)
C5—C6—H6121.8 (7)H10A—C10—H10C108.8 (10)
C1—C6—H6119.0 (7)H10B—C10—H10C107.4 (10)
O1—C7—C8107.37 (7)O3—B1—O2119.28 (8)
O1—C7—H7A108.3 (6)O3—B1—C2118.50 (8)
C8—C7—H7A110.7 (6)O2—B1—C2122.22 (8)
O1—C7—H7B109.4 (6)C1—O1—C7119.14 (7)
C8—C7—H7B110.7 (6)B1—O2—H2O108.7 (10)
H7A—C7—H7B110.3 (8)B1—O3—H3O114.9 (9)
O1—C1—C2—C3179.49 (7)C2—C1—C6—C5−0.21 (14)
C6—C1—C2—C3−1.00 (13)O1—C7—C8—C9−179.00 (7)
O1—C1—C2—B1−3.50 (13)C7—C8—C9—C10170.24 (9)
C6—C1—C2—B1176.01 (8)C3—C2—B1—O3−1.04 (13)
C1—C2—C3—C41.34 (13)C1—C2—B1—O3−177.97 (8)
B1—C2—C3—C4−175.78 (8)C3—C2—B1—O2177.95 (8)
C2—C3—C4—C5−0.45 (14)C1—C2—B1—O21.02 (14)
C3—C4—C5—C6−0.84 (14)C6—C1—O1—C7−0.53 (12)
C4—C5—C6—C11.16 (14)C2—C1—O1—C7178.98 (8)
O1—C1—C6—C5179.27 (8)C8—C7—O1—C1179.46 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.864 (16)1.900 (16)2.6547 (9)145.1 (13)
O3—H3O···O2i0.909 (15)1.870 (15)2.7776 (9)175.8 (13)
C7—H7A···C1ii0.992 (10)2.939 (10)3.8346 (12)150.7 (8)
C7—H7A···C2ii0.992 (10)3.103 (10)4.0850 (12)170.7 (8)
C7—H7A···C6ii0.992 (10)2.965 (10)3.6436 (13)126.5 (7)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2240).

References

  • Brandenburg, K. (1999). DIAMOND Version 2.1c. Crystal Impact GbR, Bonn, Germany.
  • Dabrowski, M., Lulinski, S., Serwatowski, J. & Szczerbinska, M. (2006). Acta Cryst. C62, o702–o704. [PubMed]
  • Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Rettig, S. J. & Trotter, J. (1977). Can. J. Chem.55, 3071–3075.
  • Serwatowski, J., Klis, T. & Kacprzak, K. (2006). Acta Cryst. E62, o1308–o1309.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem.70, 6907–6912. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography