PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o531.
Published online 2008 January 30. doi:  10.1107/S1600536808002638
PMCID: PMC2960414

N-(1-Naphth­yl)acetoacetamide

Abstract

The title compound, C14H13NO2, exists in the keto form. An N—H(...)O hydrogen bond helps to establish the packing.

Related literature

For background, see: Huang et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o531-scheme1.jpg

Experimental

Crystal data

  • C14H13NO2
  • M r = 227.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o531-efi1.jpg
  • a = 17.856 (2) Å
  • b = 8.1076 (12) Å
  • c = 8.5153 (14) Å
  • β = 102.777 (2)°
  • V = 1202.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 (2) K
  • 0.50 × 0.40 × 0.38 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.959, T max = 0.969
  • 5815 measured reflections
  • 2116 independent reflections
  • 1335 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.121
  • S = 1.05
  • 2116 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808002638/hb2694sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002638/hb2694Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (grant No. 20671073), NingXia Natural Gas Transferring Key Laboratory (grant No. 2004007) and Weifang University for a research grant.

supplementary crystallographic information

Comment

The europium(III) and terbium(III) complexes of beta-diketonato and related conjugated ligands have been studied as emitting materials for organic light emitting diodes (OLEDs) (e.g. Huang et al., 2001). However, the quantum efficiency of most these complexes are unfortunately still low. This may be due to inefficiency of the trpilet-triplet energy transfer in these complexes. Therefore, there is a need to design ligands which have better energy transfer properties when coordinated to the lanthanide metal ion. As part of our studies in this area, we now report the synthesis and structure of the title compound, (I).

In (I), the C=O bonds length are 1.226 (2)Å and 1.208 (2) Å, indicating that it exists in the keto form (Fig. 1) in the solid state.

In the crystal structure, the molecules are stabilized by an N—H···O intermolecular hydrogen bond (Table 1) leading to [001] chains.

Experimental

A solution of 1-naphthaline (10 mmol) in 30 ml benzene was added to a solution of ethyl acetoacetate (10 mmol). The reaction mixture was refluxed for 2 h with stirring, then the resulting pale precipitate was obtained by filtration, washed several times with benzene and dried in vacuo (yield 89%). Colourless blocks of (I) were recrystallized from ethanol by slow evaporation. IR (KBr, cm-1): 3242 (m, N—H), 1723 (s, CH3C=O), 1665 (s, amide C=O).

Refinement

The H atoms were geometrically placed (C—H = 0.93–0.97 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I) showing 30% probabiility ellipsoids (arbitrary spheres for the H atoms).

Crystal data

C14H13NO2F000 = 480
Mr = 227.25Dx = 1.256 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1643 reflections
a = 17.856 (2) Åθ = 2.3–23.5º
b = 8.1076 (12) ŵ = 0.08 mm1
c = 8.5153 (14) ÅT = 298 (2) K
β = 102.777 (2)ºBlock, colourless
V = 1202.2 (3) Å30.50 × 0.40 × 0.38 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2116 independent reflections
Radiation source: fine-focus sealed tube1335 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.042
T = 298(2) Kθmax = 25.0º
ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −21→21
Tmin = 0.959, Tmax = 0.969k = −9→6
5815 measured reflectionsl = −10→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.121  w = 1/[σ2(Fo2) + (0.0402P)2 + 0.3082P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2116 reflectionsΔρmax = 0.15 e Å3
155 parametersΔρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.21814 (9)0.2430 (2)0.4659 (2)0.0487 (5)
H10.20990.20730.55570.058*
O10.16833 (8)0.38359 (18)0.23841 (18)0.0561 (4)
O20.05169 (8)0.08943 (19)0.29965 (19)0.0631 (5)
C10.16240 (11)0.3270 (2)0.3687 (3)0.0429 (5)
C20.08902 (11)0.3457 (2)0.4262 (2)0.0445 (5)
H2A0.10110.35250.54280.053*
H2B0.06420.44800.38450.053*
C30.03443 (11)0.2049 (3)0.3741 (2)0.0453 (5)
C4−0.04209 (12)0.2179 (3)0.4158 (3)0.0648 (7)
H4A−0.07240.12290.37570.097*
H4B−0.06770.31570.36790.097*
H4C−0.03550.22360.53070.097*
C50.29076 (11)0.2094 (3)0.4290 (2)0.0451 (5)
C60.34536 (13)0.3281 (3)0.4510 (3)0.0623 (6)
H60.33470.43240.48600.075*
C70.41772 (14)0.2943 (4)0.4212 (3)0.0737 (8)
H70.45470.37690.43550.088*
C80.43444 (13)0.1437 (3)0.3720 (3)0.0694 (7)
H80.48340.12270.35570.083*
C90.37919 (12)0.0178 (3)0.3450 (3)0.0531 (6)
C100.30501 (11)0.0509 (3)0.3728 (2)0.0460 (5)
C110.24937 (13)−0.0750 (3)0.3404 (3)0.0631 (7)
H110.2006−0.05580.35830.076*
C120.26597 (16)−0.2243 (3)0.2834 (4)0.0827 (9)
H120.2284−0.30570.26160.099*
C130.33885 (17)−0.2560 (4)0.2574 (4)0.0852 (9)
H130.3496−0.35840.21860.102*
C140.39381 (15)−0.1396 (3)0.2880 (3)0.0719 (7)
H140.4424−0.16340.27130.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0492 (10)0.0576 (11)0.0413 (10)0.0042 (9)0.0144 (8)0.0041 (8)
O10.0621 (9)0.0623 (10)0.0472 (9)0.0061 (7)0.0196 (7)0.0069 (8)
O20.0646 (10)0.0575 (10)0.0711 (11)−0.0038 (8)0.0237 (8)−0.0201 (8)
C10.0510 (12)0.0366 (11)0.0421 (12)−0.0014 (9)0.0124 (10)−0.0047 (10)
C20.0494 (12)0.0423 (12)0.0427 (12)0.0050 (9)0.0124 (9)−0.0022 (9)
C30.0513 (12)0.0463 (13)0.0388 (12)0.0039 (10)0.0110 (10)0.0022 (10)
C40.0586 (14)0.0655 (16)0.0763 (17)−0.0046 (12)0.0281 (13)−0.0085 (13)
C50.0398 (11)0.0541 (13)0.0406 (12)−0.0009 (10)0.0072 (9)0.0017 (10)
C60.0578 (14)0.0590 (15)0.0686 (16)−0.0085 (12)0.0109 (12)−0.0098 (12)
C70.0507 (15)0.0733 (19)0.096 (2)−0.0191 (13)0.0133 (14)−0.0021 (16)
C80.0432 (13)0.084 (2)0.0812 (18)−0.0005 (13)0.0156 (12)0.0075 (15)
C90.0444 (12)0.0598 (15)0.0547 (14)0.0070 (11)0.0101 (10)0.0058 (11)
C100.0407 (11)0.0494 (13)0.0459 (13)0.0014 (10)0.0053 (9)0.0045 (10)
C110.0501 (13)0.0556 (15)0.0823 (18)−0.0022 (11)0.0115 (12)−0.0008 (13)
C120.0718 (18)0.0572 (17)0.114 (2)−0.0058 (14)0.0102 (16)−0.0108 (16)
C130.091 (2)0.0591 (17)0.103 (2)0.0171 (16)0.0165 (18)−0.0126 (16)
C140.0645 (16)0.0731 (18)0.0809 (19)0.0219 (14)0.0223 (14)0.0032 (15)

Geometric parameters (Å, °)

N1—C11.332 (2)C6—H60.9300
N1—C51.427 (2)C7—C81.346 (3)
N1—H10.8600C7—H70.9300
O1—C11.226 (2)C8—C91.403 (3)
O2—C31.208 (2)C8—H80.9300
C1—C21.504 (3)C9—C141.410 (3)
C2—C31.503 (3)C9—C101.422 (3)
C2—H2A0.9700C10—C111.408 (3)
C2—H2B0.9700C11—C121.361 (3)
C3—C41.490 (3)C11—H110.9300
C4—H4A0.9600C12—C131.391 (4)
C4—H4B0.9600C12—H120.9300
C4—H4C0.9600C13—C141.344 (4)
C5—C61.353 (3)C13—H130.9300
C5—C101.413 (3)C14—H140.9300
C6—C71.398 (3)
C1—N1—C5123.47 (17)C7—C6—H6119.9
C1—N1—H1118.3C8—C7—C6120.8 (2)
C5—N1—H1118.3C8—C7—H7119.6
O1—C1—N1123.44 (18)C6—C7—H7119.6
O1—C1—C2120.82 (19)C7—C8—C9121.0 (2)
N1—C1—C2115.72 (18)C7—C8—H8119.5
C3—C2—C1112.45 (16)C9—C8—H8119.5
C3—C2—H2A109.1C8—C9—C14122.5 (2)
C1—C2—H2A109.1C8—C9—C10118.9 (2)
C3—C2—H2B109.1C14—C9—C10118.6 (2)
C1—C2—H2B109.1C11—C10—C5123.57 (19)
H2A—C2—H2B107.8C11—C10—C9118.3 (2)
O2—C3—C4122.28 (19)C5—C10—C9118.16 (18)
O2—C3—C2121.29 (18)C12—C11—C10121.0 (2)
C4—C3—C2116.41 (18)C12—C11—H11119.5
C3—C4—H4A109.5C10—C11—H11119.5
C3—C4—H4B109.5C11—C12—C13120.4 (2)
H4A—C4—H4B109.5C11—C12—H12119.8
C3—C4—H4C109.5C13—C12—H12119.8
H4A—C4—H4C109.5C14—C13—C12120.5 (3)
H4B—C4—H4C109.5C14—C13—H13119.7
C6—C5—C10121.01 (19)C12—C13—H13119.7
C6—C5—N1119.7 (2)C13—C14—C9121.3 (2)
C10—C5—N1119.28 (17)C13—C14—H14119.4
C5—C6—C7120.1 (2)C9—C14—H14119.4
C5—C6—H6119.9
C5—N1—C1—O1−0.2 (3)N1—C5—C10—C114.3 (3)
C5—N1—C1—C2178.25 (17)C6—C5—C10—C92.0 (3)
O1—C1—C2—C390.1 (2)N1—C5—C10—C9−176.73 (18)
N1—C1—C2—C3−88.3 (2)C8—C9—C10—C11178.1 (2)
C1—C2—C3—O22.6 (3)C14—C9—C10—C11−0.6 (3)
C1—C2—C3—C4−175.97 (18)C8—C9—C10—C5−0.9 (3)
C1—N1—C5—C679.3 (3)C14—C9—C10—C5−179.6 (2)
C1—N1—C5—C10−101.9 (2)C5—C10—C11—C12178.7 (2)
C10—C5—C6—C7−1.3 (3)C9—C10—C11—C12−0.3 (3)
N1—C5—C6—C7177.5 (2)C10—C11—C12—C130.7 (4)
C5—C6—C7—C8−0.7 (4)C11—C12—C13—C14−0.1 (5)
C6—C7—C8—C91.8 (4)C12—C13—C14—C9−0.8 (4)
C7—C8—C9—C14177.7 (2)C8—C9—C14—C13−177.4 (3)
C7—C8—C9—C10−0.9 (4)C10—C9—C14—C131.2 (4)
C6—C5—C10—C11−176.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.012.853 (2)168

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2694).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Huang, L., Wang, K. Z., Huang, C. H., Li, F. Y. & Huang, Y. Y. (2001). J. Mater. Chem.11, 790–793.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography