PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): m425.
Published online 2008 January 25. doi:  10.1107/S1600536808002006
PMCID: PMC2960410

cis-Bis(2-sulfidopyridine N-oxide)platinum(II)

Abstract

In the crystal structure of the title complex, [Pt(C5H4NOS)2], the Pt atom is coordinated by two O atoms and two S atoms in a cis configuration, forming a distorted square-planar coordination geometry. The mol­ecule exhibits pseudo-C 2v symmetry and is essentially planar, with a maximum deviation from planarity of 0.0124 (2) Å. The dihedral angle between the two pyridine rings is 5.85 (2)°.

Related literature

For related literature, see: Bovin et al. (1992 [triangle]); Chen et al. (1991 [triangle]); Dyksterhouse et al. (2000 [triangle]); Katsuyuki et al. (1991 [triangle]); Leonard et al. (1955 [triangle]); Lobana & Bhatia (1989 [triangle]); Lydon et al. (1982 [triangle]); Ohms et al. (1982 [triangle]); Symons & West (1985 [triangle]); Zhou et al. (2005 [triangle]); Shi et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m425-scheme1.jpg

Experimental

Crystal data

  • [Pt(C5H4NOS)2]
  • M r = 447.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m425-efi1.jpg
  • a = 6.9832 (3) Å
  • b = 22.3897 (11) Å
  • c = 8.1495 (4) Å
  • β = 113.572 (3)°
  • V = 1167.87 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 12.36 mm−1
  • T = 193 (2) K
  • 0.27 × 0.22 × 0.08 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Blessing, 1995 [triangle], 1997 [triangle]) T min = 0.051, T max = 0.372
  • 25638 measured reflections
  • 2778 independent reflections
  • 2610 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.114
  • S = 1.32
  • 2778 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 1.73 e Å−3
  • Δρmin = −3.87 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP2 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808002006/wn2232sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002006/wn2232Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

N-oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibiotic activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al.; 1992). Pyridine N-oxides bearing a sulfur group at the 2-position display significant antimicrobial activity (Leonard et al., 1955). The crystal structure of the title compound in the trans configuration has already been reported (Zhou et al., 2005). The crystal structures of cis-bis(2-mercaptopyridine N-oxide)palladium and cis-bis(2-mercaptopyridine N-oxide)nickel have already been reported (Shi et al., 1997; Chen et al., 1991).

In the title compound, the Pt is coordinated by two O atoms and two S atoms from two mercaptopyridine N-oxide ligands in a cis configuration. The coordination geometry is distorted square-planar. The whole molecule exhibits pseudo-C2v symmetry, with a pseudo-C2 axis passing through the platinum atom. The average Pt—O and Pt—S distances of 2.048 (7) and 2.236 (3) Å of the title compound are comparable with the values reported in the literature (Dyksterhouse et al., 2000). The mean Pt—S bond length (2.236 (3) Å,) is shorter while the mean Pt—O bond length (2.048 (7) Å) is longer than those reported for the trans isomer (Pt—S 2.270 Å; Pt—O 2.007 Å) (Zhou et al., 2005). The C—S bond distances [1.725 (11) and 1.730 (11) Å] are slightly longer than those reported for the uncoordinated thione molecule [1.692 (2)–1.698 (2) Å; Ohms et al., 1982]. The mean C—S bond length (1.727 Å) shows partial double bond character; it is shorter than the normal covalent bond distance of 1.81 (2) Å, for a C—S single bond (Lydon et al., 1982). This further results in the fact that complexes with mercaptopyridine oxide (mpo) ligands have little ability to bridge another metal ion through a sulfur atom to form polynuclear complexes (Shi et al., 1997). The entire molecule is essentially planar, with a maximum deviation from planarity of 0.0124 (2) Å for atom C3. The dihedral angle between the two pyridine rings is 5.85 (2)°.

Experimental

By heating a mixture of dichlorido(ethane1,2–diamine)platinum(II), Pt(en)Cl2 (0.326 g,1 mmol) and 1-hydroxypyridine-2- thione sodium salt (0.298 g, 2 mmol) in 20 ml of water at 338 K with magnetic stirring for 1 h, a red-orange compound was obtained. This was filtered and dried (0.32 g, 80% yield). The compound was dissolved in methanol and allowed to undergo slow evaporation. Fine red crystals were obtained after a week.

Refinement

H atoms were placed in calculated positions [C—H = 0.95 Å] and refined in the riding model approximation; Uiso(H) = 1.2Ueq (C). The highest residual electron density peak is 1.724 Å from C13 and the deepest hole lies 1.688 Å from N1.

Figures

Fig. 1.
View of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Crystal data

[Pt(C5H4NOS)2]F000 = 832
Mr = 447.39Dx = 2.545 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 9973 reflections
a = 6.9832 (3) Åθ = 2.8–28º
b = 22.3897 (11) ŵ = 12.36 mm1
c = 8.1495 (4) ÅT = 193 (2) K
β = 113.572 (3)ºBlock, orange
V = 1167.87 (10) Å30.27 × 0.22 × 0.08 mm
Z = 4

Data collection

Bruker APEXII Kappa-CCD diffractometerRint = 0.068
CCD scanθmax = 27.9º
Absorption correction: multi-scan(SADABS; Blessing, 1995, 1997)θmin = 1.8º
Tmin = 0.051, Tmax = 0.372h = −9→9
25638 measured reflectionsk = −29→29
2778 independent reflectionsl = −10→10
2610 reflections with I > 2σ(I)

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0153P)2 + 17.8973P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.054(Δ/σ)max = 0.001
wR(F2) = 0.114Δρmax = 1.73 e Å3
S = 1.32Δρmin = −3.86 e Å3
2778 reflectionsExtinction correction: none
154 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pt10.75198 (6)0.117494 (18)0.60862 (6)0.03763 (14)
N10.5870 (13)0.1570 (4)0.2386 (12)0.0373 (18)
C20.5399 (16)0.1976 (5)0.1045 (15)0.042 (2)
H20.57740.23840.13080.05*
C30.4376 (18)0.1791 (6)−0.0694 (17)0.050 (3)
H30.40970.2066−0.1650.059*
C40.3746 (18)0.1195 (6)−0.1053 (16)0.048 (3)
H40.30070.1064−0.22510.058*
C50.4207 (16)0.0803 (5)0.0340 (15)0.042 (2)
H50.37720.03990.01020.05*
C60.5318 (17)0.0990 (5)0.2124 (15)0.039 (2)
O70.6952 (11)0.1788 (3)0.4073 (10)0.0380 (15)
S80.5946 (4)0.05080 (12)0.3916 (4)0.0413 (6)
N90.9639 (13)0.1639 (4)0.9685 (12)0.0378 (19)
C101.0646 (17)0.2052 (5)1.0962 (16)0.042 (2)
H101.08850.24411.06170.051*
C111.1311 (17)0.1915 (5)1.2724 (16)0.044 (2)
H111.19860.22081.36120.053*
C121.0994 (17)0.1342 (5)1.3215 (15)0.043 (2)
H121.1470.12391.44450.051*
C130.9994 (17)0.0921 (5)1.1923 (15)0.042 (2)
H130.97630.0531.22630.051*
C140.9315 (16)0.1069 (5)1.0105 (14)0.038 (2)
O150.8948 (11)0.1822 (3)0.7947 (9)0.0381 (16)
S160.8174 (4)0.05572 (12)0.8401 (4)0.0394 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pt10.0364 (2)0.0382 (2)0.0391 (2)0.00055 (17)0.01591 (17)0.00058 (17)
N10.032 (4)0.039 (5)0.042 (5)−0.002 (3)0.017 (4)−0.001 (4)
C20.033 (5)0.049 (6)0.039 (6)0.006 (4)0.009 (4)0.011 (5)
C30.043 (6)0.063 (7)0.046 (7)0.003 (5)0.021 (5)0.013 (6)
C40.040 (6)0.062 (7)0.041 (6)0.001 (5)0.014 (5)0.000 (5)
C50.031 (5)0.056 (7)0.041 (6)−0.003 (5)0.016 (4)−0.003 (5)
C60.037 (5)0.041 (5)0.045 (6)0.001 (4)0.023 (5)0.000 (4)
O70.035 (4)0.043 (4)0.036 (4)−0.003 (3)0.016 (3)−0.002 (3)
S80.0440 (14)0.0404 (13)0.0391 (14)−0.0015 (11)0.0164 (12)0.0009 (11)
N90.032 (4)0.041 (5)0.044 (5)0.002 (3)0.020 (4)0.000 (4)
C100.039 (6)0.039 (5)0.050 (7)−0.001 (4)0.019 (5)−0.003 (5)
C110.037 (6)0.050 (6)0.044 (6)0.000 (5)0.016 (5)−0.009 (5)
C120.039 (6)0.052 (6)0.038 (6)0.003 (5)0.016 (5)−0.001 (5)
C130.042 (6)0.047 (6)0.043 (6)0.004 (5)0.024 (5)0.007 (5)
C140.032 (5)0.044 (6)0.040 (6)0.001 (4)0.017 (4)−0.001 (4)
O150.038 (4)0.042 (4)0.034 (4)0.000 (3)0.014 (3)0.005 (3)
S160.0399 (14)0.0399 (13)0.0381 (14)−0.0016 (10)0.0154 (11)−0.0001 (10)

Geometric parameters (Å, °)

Pt1—O152.045 (7)N9—C141.364 (13)
Pt1—O72.052 (7)C10—C111.356 (16)
Pt1—S162.234 (3)C11—C121.389 (16)
Pt1—S82.239 (3)C12—C131.376 (16)
N1—C61.348 (13)C13—C141.403 (15)
N1—C21.357 (13)C14—S161.730 (11)
N1—O71.367 (11)C2—H20.9500
C2—C31.372 (16)C3—H30.9500
C3—C41.399 (17)C4—H40.9500
C4—C51.367 (16)C5—H50.9500
C5—C61.410 (15)C10—H100.9500
C6—S81.725 (11)C11—H110.9500
N9—C101.359 (14)C12—H120.9500
N9—O151.363 (11)C13—H130.9500
O15—Pt1—O790.0 (3)C10—N9—C14122.1 (10)
O15—Pt1—S1686.4 (2)O15—N9—C14121.0 (9)
O7—Pt1—S16176.3 (2)C11—C10—N9120.6 (10)
O15—Pt1—S8176.4 (2)C10—C11—C12119.2 (11)
O7—Pt1—S886.4 (2)C13—C12—C11120.2 (11)
S16—Pt1—S897.13 (10)C12—C13—C14120.0 (10)
C6—N1—C2123.8 (10)N9—C14—C13117.8 (10)
C6—N1—O7120.7 (9)N9—C14—S16119.2 (8)
C2—N1—O7115.4 (9)C13—C14—S16122.9 (9)
N1—C2—C3119.2 (11)N9—O15—Pt1115.1 (6)
C2—C3—C4119.6 (11)C14—S16—Pt198.1 (4)
C5—C4—C3119.3 (11)N1—C2—H2120.0
C4—C5—C6121.0 (11)C3—C2—H2120.0
N1—C6—C5117.0 (10)C2—C3—H3120.0
N1—C6—S8120.6 (8)C4—C3—H3120.0
C5—C6—S8122.4 (9)C3—C4—H4120.0
N1—O7—Pt1114.7 (6)C5—C4—H4120.0
C6—S8—Pt197.5 (4)C4—C5—H5119.0
C10—N9—O15116.8 (9)C6—C5—H5120.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2232).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr.129, 145–150.
  • Bruker (2006). APEX2 Version 2.0. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, X., Hu, Y., Wu, D., Weng, L. & Kang, B. (1991). Polyhedron, 10, 2651–2657.
  • Dyksterhouse, R. M., Howell, B. A. & Squattrito, P. J. (2000). Acta Cryst. C56, 64–66. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc 113, 5099–5100.
  • Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.
  • Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res.48, 394–401.
  • Lydon, J. D., Elder, R. C. & Deutch, E. (1982). Inorg. Chem.21, 3168–3197.
  • Ohms, U., Guth, H., Kutoglu, A. & Scheringer, C. (1982). Acta Cryst. B38, 831–834.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, J. C., Wen, T. B., Zheng, Y., Zhong, S. J., Wu, D. X., Liu, Q. T., Kang, B. S., Wu, B. M. & Mak, T. C. W. (1997). Polyhedron, 16, 369–375.
  • Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379–381.
  • Zhou, J.-H., Li, Y.-Z., Lui, Z. & Chen, X.-T. (2005). Acta Cryst. E61, m195–m197.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography