PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o496–o497.
Published online 2008 January 23. doi:  10.1107/S1600536808001426
PMCID: PMC2960408

1-Methyl-1-azonia-3,5-diaza-7-phospha­tricyclo­[3.3.1.1]decane 7-oxide triiodide

Abstract

The title compound, C7H15N3OP+·I3 , is a derivative of the well known water-soluble amino­phosphine 1,3,5-triaza-7-phosphaadamantane (PTA). The crystal structure is composed of a cage-like 1-methyl-1-azonia-3,5-diaza-7-phospha­tricyclo­[3.3.1.1]decane 7-oxide cation and a triiodide anion. The N-methyl­ation of the PTA cage results in a slight elongation of the corresponding C—N bonds, while the oxidation of the P atom leads to a slight shortening of the C—P bonds in comparison with those of PTA. In general, most of the bonding parameters are comparable with those reported for related compounds bearing the PTA core. Two inter­molecular C—H(...)O hydrogen bonds between methyl­ene groups and the P=O group are responsible for the linkage of neighbouring cations into linear one-dimensional hydrogen-bonded chains.

Related literature

For a comprehensive review of PTA chemistry, see: Phillips et al. (2004 [triangle]). For general background, see: Kirillov et al. (2007 [triangle]); Smoleński & Pombeiro (2008 [triangle]). For synthesis of PTA and its N-methyl­ated derivative, see: Daigle et al. (1974 [triangle]); Daigle (1998 [triangle]). For related structures, see: Forward et al. (1996a [triangle],b [triangle]); Otto et al. (2005 [triangle]); Frost et al. (2006 [triangle]); Marsh et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o496-scheme1.jpg

Experimental

Crystal data

  • C7H15N3OP+·I3
  • M r = 568.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o496-efi1.jpg
  • a = 7.1570 (8) Å
  • b = 8.2257 (8) Å
  • c = 25.903 (3) Å
  • β = 92.472 (7)°
  • V = 1523.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.24 mm−1
  • T = 150 (2) K
  • 0.13 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.497, T max = 0.574 (expected range = 0.464–0.536)
  • 11526 measured reflections
  • 2789 independent reflections
  • 2214 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.102
  • S = 1.12
  • 2789 reflections
  • 172 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 2.44 e Å−3
  • Δρmin = −1.03 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: WinGX (Version 1.70.01; Farrugia, 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808001426/kp2159sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001426/kp2159Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation for Science and Technology (FCT), Portugal, and its POCI 2010 programme (FEDER funded).

supplementary crystallographic information

Comment

Within our ongoing research (Kirillov et al., 2007; Smoleński & Pombeiro, 2008) on the synthesis of transition metal complexes with PTA or derived ligands, we have attempted the reaction of a copper(II) salt with N-methyl-1,3,5-triaza-7-phospha-adamantane iodide, which resulted in the formation of the title compound, (I), as a by-product. Its crystal structure is reported herein.

The molecular structure of (I) (Fig. 1) bears a cage-like cation [C7H15N3OP]+ and a tri-iodide anion, with the shortest cation···anion separation of ca 4.0 Å. The N-methylation of the PTA cage results in a slight elongation of the C—N bonds around N3 atom [avg. 1.53 (1) Å] in comparison with the C—N bonds around N1 and N2 atoms [avg. 1.46 (1) Å] (Table 1). The oxidation of P1 atom also slightly affects the C—P bonds [avg. 1.82 (1) Å] which are somewhat shorter than those in PTA [avg. 1.86 (1) Å]. The tri-iodide anion with the I2—I1—I3 angle of 172.41 (2)° deviates from the linear geometry. In general, most of the bonding parameters of (I) agree within values reported for the related compound, [C7H15N3OP][BPh4] (Forward et al., 1996a,b), possessing similar cation, as well as for other N-alkylated (Otto et al., 2005; Forward et al., 1996a,b) or P-oxidized (Frost et al., 2006; Marsh et al., 2002) PTA derivatives.

In (I), the neighbouring cationic units are combined into the linear one-dimensional H-bonded chains (Fig. 2) by means of two intermolecular C—H···O hydrogen bonds [C23—H23A···O1i 1.00 (11) Å, 2.26 (11) Å, 3.161 (9) Å, 150 (9)°; C31—-H31A···O1i 0.97 (10) Å, 2.23 (10) Å, 3.160 (9) Å, 161 (8)°; symmetry code: 1 + x, y, z], which link the methylene groups (C23, C31) with the O1 atom of the P=O moiety.

Experimental

The aqueous solutions (5 ml each) of Cu(NO3)2.2.5 H2O (116 mg, 0.50 mmol) and N-methyl-1,3,5-triaza-7-phospha-adamantane iodide, [C7H15N3P]I (299 mg, 1.00 mmol) [for the synthesis of this compound, see: Daigle et al. (1974); Daigle (1998)], were combined and left stirring in air at ambient temperature for 1 h. The resulting white suspension containing mainly a CuI aminophosphine compound was filtered off. The colourless filtrate was left to evaporate in a beaker in air for two weeks, leading to the formation of a small crop of red X-ray quality crystals of compound (I) as a by-product (it is typically contaminated by a colourless crystalline material). FT–IR (KBr pellet), cm-1: 2967 w, 2939 w, 1449 m, 1384 s, 1304 m, 1279 w, 1246 w, 1195 s [ν(P=O)], 1108 w, 1091 w, 1066 w, 1019 m, 983 m, 934 m, 900 w, 876 w, 816 m, 792 w, 752 m, 544 w, 441 w, 408 w. FAB-MS+ (m-nitrobenzylicalcohol), m/z: 188 [C7H15N3OP]+.

Refinement

All hydrogen atoms were located except from H4A, H4B and H4C which were inserted in calculated positions.

Figures

Fig. 1.
The molecular structure of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as grey sticks. C, grey; N, blue; P, orange; O, red; I, purple.
Fig. 2.
Fragment of the crystal packing diagram of (I) showing the generation of a one-dimensional linear chain from the neighbouring cations via intermolecular C—H···O hydrogen bonds (dotted lines). Tri-iodide anions are omitted ...

Crystal data

C7H15N3OP+·I3F000 = 1040
Mr = 568.89Dx = 2.480 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71069 Å
Hall symbol: -P2ynCell parameters from 2835 reflections
a = 7.1570 (8) Åθ = 2.6–27.9º
b = 8.2257 (8) ŵ = 6.24 mm1
c = 25.903 (3) ÅT = 150 (2) K
β = 92.472 (7)ºPlate, red
V = 1523.5 (3) Å30.13 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2789 independent reflections
Radiation source: fine-focus sealed tube2214 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.040
T = 150(2) Kθmax = 25.4º
[var phi] and ω scansθmin = 2.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.497, Tmax = 0.574k = −9→9
11526 measured reflectionsl = −29→31

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102  w = 1/[σ2(Fo2) + (0.045P)2 + 6.2243P] where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.017
2789 reflectionsΔρmax = 2.44 e Å3
172 parametersΔρmin = −1.03 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5522 (9)0.4541 (10)0.1979 (3)0.0186 (16)
C20.5510 (9)0.1132 (8)0.1974 (3)0.0156 (15)
C30.5535 (10)0.2823 (10)0.1042 (3)0.0188 (15)
C40.8586 (11)0.2823 (11)0.0631 (3)0.0294 (18)
H4A0.99420.28190.07010.044*
H4B0.82300.37960.04320.044*
H4C0.82220.18510.04320.044*
C120.8197 (10)0.2815 (10)0.2227 (3)0.0192 (15)
C230.8255 (10)0.1301 (8)0.1442 (3)0.0162 (15)
C310.8255 (10)0.4347 (10)0.1446 (3)0.0192 (16)
N10.7565 (7)0.4292 (7)0.1960 (2)0.0169 (13)
N20.7569 (7)0.1334 (7)0.1956 (2)0.0141 (12)
N30.7614 (8)0.2828 (7)0.1131 (2)0.0168 (12)
O10.2300 (7)0.2825 (7)0.1582 (2)0.0268 (12)
P10.4367 (2)0.2827 (2)0.16547 (7)0.0168 (4)
I10.42016 (7)0.78153 (6)0.088953 (18)0.02270 (15)
I20.14227 (7)0.78170 (6)0.16786 (2)0.02691 (16)
I30.73414 (8)0.78543 (8)0.02143 (2)0.03606 (18)
H1A0.517 (12)0.452 (11)0.232 (4)0.043*
H1B0.498 (12)0.558 (11)0.183 (3)0.043*
H2A0.501 (12)0.108 (11)0.232 (4)0.043*
H2B0.521 (12)0.008 (12)0.182 (3)0.050*
H3A0.512 (14)0.190 (12)0.084 (4)0.060*
H3B0.522 (14)0.380 (13)0.085 (4)0.060*
H12A0.948 (16)0.286 (12)0.225 (4)0.060*
H12B0.793 (14)0.282 (11)0.256 (4)0.050*
H23A0.964 (15)0.135 (13)0.147 (4)0.060*
H23B0.769 (13)0.034 (13)0.127 (4)0.060*
H31A0.959 (14)0.414 (12)0.147 (4)0.060*
H31B0.768 (13)0.538 (13)0.126 (4)0.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.010 (3)0.026 (5)0.020 (4)0.005 (3)0.001 (3)−0.003 (3)
C20.014 (3)0.011 (4)0.022 (4)−0.002 (3)0.006 (3)0.000 (3)
C30.013 (3)0.021 (4)0.023 (4)0.002 (3)−0.003 (3)0.000 (3)
C40.027 (4)0.041 (5)0.022 (4)−0.001 (4)0.017 (3)−0.007 (4)
C120.016 (4)0.021 (4)0.020 (4)−0.001 (3)−0.006 (3)0.000 (3)
C230.018 (4)0.006 (4)0.026 (4)0.004 (3)0.005 (3)0.002 (3)
C310.012 (4)0.027 (5)0.019 (4)0.001 (3)0.002 (3)0.001 (3)
N10.011 (3)0.020 (3)0.019 (3)−0.001 (2)−0.002 (2)0.000 (3)
N20.009 (3)0.017 (3)0.017 (3)0.001 (2)0.002 (2)0.002 (2)
N30.014 (3)0.020 (3)0.016 (3)−0.005 (3)0.002 (2)−0.004 (3)
O10.009 (2)0.029 (3)0.042 (3)0.000 (2)−0.002 (2)0.002 (3)
P10.0075 (8)0.0187 (9)0.0244 (10)0.0007 (7)0.0003 (7)−0.0004 (8)
I10.0282 (3)0.0183 (3)0.0215 (3)0.0009 (2)−0.00114 (19)−0.0002 (2)
I20.0230 (3)0.0207 (3)0.0376 (3)0.0000 (2)0.0081 (2)0.0000 (2)
I30.0341 (3)0.0527 (4)0.0218 (3)0.0017 (3)0.0054 (2)−0.0023 (3)

Geometric parameters (Å, °)

C1—N11.479 (8)C12—N11.462 (9)
C1—P11.821 (8)C12—N21.467 (10)
C1—H1A0.94 (9)C12—H12A0.92 (11)
C1—H1B1.01 (9)C12—H12B0.90 (11)
C2—N21.486 (8)C23—N21.440 (9)
C2—P11.799 (7)C23—N31.550 (9)
C2—H2A0.98 (9)C23—H23A0.99 (10)
C2—H2B0.97 (10)C23—H23B0.99 (10)
C3—N31.495 (9)C31—N11.441 (9)
C3—P11.825 (8)C31—N31.551 (9)
C3—H3A0.96 (10)C31—H31A0.97 (10)
C3—H3B0.96 (11)C31—H31B1.06 (10)
C4—N31.496 (9)O1—P11.483 (5)
C4—H4A0.9800I1—I32.9067 (8)
C4—H4B0.9800I1—I22.9127 (7)
C4—H4C0.9800
N1—C1—P1107.9 (5)N2—C23—H23A108 (6)
N1—C1—H1A109 (5)N3—C23—H23A106 (6)
P1—C1—H1A107 (6)N2—C23—H23B107 (6)
N1—C1—H1B118 (5)N3—C23—H23B107 (6)
P1—C1—H1B109 (5)H23A—C23—H23B117 (8)
H1A—C1—H1B105 (7)N1—C31—N3110.8 (6)
N2—C2—P1109.3 (5)N1—C31—H31A109 (6)
N2—C2—H2A116 (5)N3—C31—H31A99 (6)
P1—C2—H2A106 (5)N1—C31—H31B108 (5)
N2—C2—H2B107 (5)N3—C31—H31B108 (5)
P1—C2—H2B114 (5)H31A—C31—H31B122 (8)
H2A—C2—H2B104 (7)C31—N1—C12110.7 (6)
N3—C3—P1110.8 (5)C31—N1—C1114.0 (5)
N3—C3—H3A112 (6)C12—N1—C1112.6 (6)
P1—C3—H3A109 (6)C23—N2—C12110.4 (6)
N3—C3—H3B106 (6)C23—N2—C2113.9 (5)
P1—C3—H3B110 (6)C12—N2—C2111.2 (6)
H3A—C3—H3B109 (8)C4—N3—C3111.3 (6)
N3—C4—H4A109.5C4—N3—C31108.6 (5)
N3—C4—H4B109.5C3—N3—C31110.7 (6)
H4A—C4—H4B109.5C4—N3—C23108.0 (6)
N3—C4—H4C109.5C3—N3—C23110.4 (6)
H4A—C4—H4C109.5C31—N3—C23107.8 (5)
H4B—C4—H4C109.5O1—P1—C2119.2 (3)
N1—C12—N2112.4 (5)O1—P1—C1119.3 (3)
N1—C12—H12A107 (6)C2—P1—C1101.5 (3)
N2—C12—H12A111 (6)O1—P1—C3112.4 (3)
N1—C12—H12B112 (6)C2—P1—C3100.5 (4)
N2—C12—H12B113 (6)C1—P1—C3100.8 (4)
H12A—C12—H12B100 (9)I3—I1—I2172.41 (2)
N2—C23—N3111.1 (5)
N3—C31—N1—C1257.7 (7)N1—C31—N3—C4−172.0 (6)
N3—C31—N1—C1−70.5 (8)N1—C31—N3—C365.6 (7)
N2—C12—N1—C31−59.3 (8)N1—C31—N3—C23−55.2 (7)
N2—C12—N1—C169.6 (8)N2—C23—N3—C4172.4 (6)
P1—C1—N1—C3165.5 (7)N2—C23—N3—C3−65.7 (7)
P1—C1—N1—C12−61.6 (7)N2—C23—N3—C3155.3 (7)
N3—C23—N2—C12−57.4 (7)N2—C2—P1—O1174.7 (4)
N3—C23—N2—C268.6 (7)N2—C2—P1—C1−52.0 (5)
N1—C12—N2—C2359.1 (7)N2—C2—P1—C351.4 (5)
N1—C12—N2—C2−68.4 (7)N1—C1—P1—O1−175.4 (4)
P1—C2—N2—C23−64.0 (7)N1—C1—P1—C251.3 (6)
P1—C2—N2—C1261.6 (6)N1—C1—P1—C3−51.8 (6)
P1—C3—N3—C4179.9 (5)N3—C3—P1—O1179.9 (5)
P1—C3—N3—C31−59.2 (7)N3—C3—P1—C2−52.2 (6)
P1—C3—N3—C2360.0 (7)N3—C3—P1—C151.8 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C23—H23A···O1i0.99 (10)2.26 (11)3.161 (9)150 (9)
C31—H31A···O1i0.97 (10)2.23 (10)3.160 (9)161 (8)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2159).

References

  • Bruker (2004). APEX2, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Daigle, D. J. (1998). Inorg. Synth.32, 40–45.
  • Daigle, D. J., Pepperman, A. B. Jr & Vail, S. L. (1974). J. Heterocycl. Chem.11, 407–408.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Forward, J. M., Staples, R. J. & Fackler, J. P. Jr (1996a). Z. Kristallogr.211, 129–130.
  • Forward, J. M., Staples, R. J. & Fackler, J. P. Jr (1996b). Z. Kristallogr.211, 131–132.
  • Frost, B. J., Mebi, C. A. & Gingrich, P. W. (2006). Eur. J. Inorg. Chem. pp. 1182–1189.
  • Kirillov, A. M., Smoleński, P., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2007). Eur. J. Inorg. Chem. pp. 2686–2692.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Marsh, R. E., Kapon, M., Hu, S. & Herbstein, F. H. (2002). Acta Cryst. B58, 62–77. [PubMed]
  • Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem.690, 4337–4342.
  • Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev.248, 955–993.
  • Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smoleński, P. & Pombeiro, A. J. L. (2008). Dalton Trans. pp. 87–91. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography