PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o463.
Published online 2008 January 16. doi:  10.1107/S1600536808001190
PMCID: PMC2960398

5,7-Di-2-pyridyl-2,3-dihydro­thieno[3,4-b][1,4]dioxine

Abstract

The title compound, C16H12N2O2S, was prepared by a Neigishi cross-coupling reaction to investigate the coordination chemistry of thio­phene-containing ligands. In the mol­ecule, the pyridine rings are twisted from the thio­phene ring by 20.6 (1) and 4.1 (2)°. The six-membered dihydro­dioxine ring is in a half-chair conformation.

Related literature

For the structures of other 2,5-disubsituted 3,4-ethyl­ene­dioxy­thio­phene (EDOT) derivatives, see: Lomas et al. (2007 [triangle]); and Sato et al. (2006 [triangle]). For related literature, see: Ghosh & Simonsen (1993 [triangle]); Han & Choi (2000 [triangle]); Roncali et al. (2005 [triangle]); Sotzing et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o463-scheme1.jpg

Experimental

Crystal data

  • C16H12N2O2S
  • M r = 296.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o463-efi1.jpg
  • a = 10.5189 (12) Å
  • b = 9.8752 (12) Å
  • c = 13.1961 (18) Å
  • β = 97.752 (3)°
  • V = 1358.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 173 (2) K
  • 0.38 × 0.30 × 0.20 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.864, T max = 1.000 (expected range = 0.823–0.952)
  • 22945 measured reflections
  • 5134 independent reflections
  • 4316 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.108
  • S = 1.04
  • 5134 reflections
  • 238 parameters
  • All H-atom parameters refined
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808001190/lh2589sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001190/lh2589Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada for financial support. Martin Lemaire thanks Brock University for providing start-up funding for this research. X-ray crystallographic analyses were performed at the McMaster Analytical X-ray (MAX) Diffraction Facility.

supplementary crystallographic information

Comment

Derivatives of 3,4-ethylenedioxythiophene (EDOT) have been actively pursued primarily as precursors to polymers with interesting electronic and optical properties (Roncali et al., 2005). The presence of the ethylenedioxy substituent greatly enhances the stability of these materials relative to unsubstituted polythiophenes. As part of our efforts toward new molecule-based materials, we are investigating the propensity for 3,4-ethylenedioxythiophene derivatives to function as ligands for transition metal ions. We have prepared the title compound (I) featuring 2-pyridyl substituents appended to the 2,5-positions of the 3,4-ethylenedioxythiophene ring and are investigating the coordination chemistry of this potentially chelating ligand. We report herein the crystal structure of (I).

In the molecular structure of (I) bond lengths and angles within the EDOT moiety are within normal ranges (Han & Choi, 2000; Sotzing et al., 1996). As is typical in the structures of other EDOT derivatives, the six-membered dioxane-type ring in (I) is in a half-chair conformation, with the H atoms on the ethylene C atoms in a nearly gauche configuration. Each pyridine ring is tilted out of the plane of the EDOT moiety, with torsion angles of 19.39 (12) and -0.78 (12)° for S1—C11—C12—N2 and N1—C5—C6—S1, respectively and is likely the result of short intramolecular contacts between N and S atoms (2.923 (1) and 2.965 (1)Å for S1···N1 and S1···N2, respectively). Bond lengths between the EDOT group and the pyridine rings are 1.4626 (13) and 1.4609 (13) Å for C5—C6 and C11—C12, respectively. These lengths are the same (within experimental error) as those observed for the related bonds in the structure of 2-pyridylthiophene [1.469 (3) Å] (Ghosh & Simonsen, 1993).

Experimental

2-pyridylzinc bromide solution (20.0 ml of a 0.5 M THF solution, 10.0 mmol) was added via syringe to a dry, nitrogen-purged Schlenk flask protected from light containing 2,5-dibromo-3,4-ethylenedioxythiophene (1.0 g, 3.3 mmol) and Pd(PPh3)4 (0.35 g, 0.3 mmol). The mixture was refluxed for 24 h, cooled to room temperature and stirred in basic edta solution (~0.2 M) for approximately 24 h. The edta solution was extracted with chloroform, concentrated to a small volume and poured into pentane to precipitate out the product as a pale yellow solid. Yield 0.48 g (49%). Crystals were grown by slow evaporation of an acetone solution of the product at 278 K. Anal.calcd (%) for C16H12N2O2S: C 64.85, H 4.09, N 9.46.Found: C 64.23, H 3.82, N 9.25. MS(EI+), m/z (%): 296 (100).

Refinement

H atoms were found using the difference map and all H parameters were refined.

Figures

Fig. 1.
The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Crystal data

C16H12N2O2SF000 = 616
Mr = 296.34Dx = 1.449 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8327 reflections
a = 10.5189 (12) Åθ = 2.6–32.3º
b = 9.8752 (12) ŵ = 0.24 mm1
c = 13.1961 (18) ÅT = 173 (2) K
β = 97.752 (3)ºBlock, colourless
V = 1358.2 (3) Å30.38 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker APEXII diffractometer5134 independent reflections
Radiation source: fine-focus sealed tube4316 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
T = 173(2) Kθmax = 33.3º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −16→16
Tmin = 0.864, Tmax = 1.000k = −8→15
22945 measured reflectionsl = −20→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.109  w = 1/[σ2(Fo2) + (0.0623P)2 + 0.2445P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5134 reflectionsΔρmax = 0.47 e Å3
238 parametersΔρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.52108 (2)0.40887 (2)0.128549 (18)0.02244 (7)
O10.21374 (7)0.28139 (9)−0.04158 (6)0.03008 (17)
N10.32131 (9)0.54483 (9)0.22458 (7)0.02895 (18)
C10.24126 (12)0.61030 (12)0.27867 (9)0.0343 (2)
H10.2820 (16)0.6590 (17)0.3407 (13)0.046 (4)*
O20.44345 (8)0.16437 (8)−0.10327 (6)0.02944 (16)
N20.76947 (9)0.27018 (10)0.12037 (8)0.03112 (19)
C20.10899 (12)0.60791 (12)0.25650 (10)0.0343 (2)
H20.0574 (15)0.6560 (17)0.2998 (12)0.043 (4)*
C30.05533 (11)0.53586 (12)0.17120 (10)0.0338 (2)
H3−0.0338 (17)0.5319 (17)0.1520 (13)0.044 (4)*
C40.13538 (11)0.46837 (11)0.11278 (9)0.0294 (2)
H40.0956 (16)0.4152 (16)0.0528 (13)0.043 (4)*
C50.26776 (9)0.47352 (9)0.14214 (7)0.02228 (17)
C60.35800 (9)0.39961 (9)0.08746 (7)0.02107 (17)
C70.33364 (9)0.31265 (9)0.00561 (7)0.02180 (17)
C80.21613 (12)0.21560 (15)−0.13906 (9)0.0373 (3)
H8B0.1311 (17)0.1762 (17)−0.1607 (13)0.045 (4)*
H8A0.2400 (17)0.2820 (17)−0.1874 (14)0.048 (4)*
C90.31708 (12)0.10680 (12)−0.13079 (10)0.0343 (2)
H9B0.3068 (16)0.0402 (16)−0.0763 (13)0.042 (4)*
H9A0.3192 (16)0.0601 (16)−0.1964 (13)0.040 (4)*
C100.44657 (9)0.25377 (9)−0.02383 (7)0.02233 (17)
C110.55669 (9)0.29531 (9)0.03618 (7)0.02234 (17)
C120.68890 (10)0.25174 (10)0.03345 (8)0.02406 (18)
C130.72798 (11)0.19200 (11)−0.05374 (9)0.0289 (2)
H130.6694 (17)0.1792 (18)−0.1144 (13)0.049 (5)*
C140.85394 (11)0.14936 (13)−0.04938 (10)0.0341 (2)
H140.8846 (18)0.1135 (18)−0.1082 (14)0.051 (5)*
C150.93616 (11)0.16398 (14)0.04084 (11)0.0389 (3)
H151.0276 (17)0.1367 (18)0.0466 (13)0.050 (5)*
C160.89017 (11)0.22521 (14)0.12321 (10)0.0375 (3)
H160.9492 (17)0.2418 (17)0.1890 (14)0.051 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.02221 (12)0.02250 (11)0.02233 (12)−0.00056 (7)0.00197 (8)0.00032 (7)
O10.0229 (3)0.0409 (4)0.0257 (3)0.0009 (3)0.0004 (3)−0.0099 (3)
N10.0312 (4)0.0294 (4)0.0248 (4)0.0052 (3)−0.0010 (3)−0.0057 (3)
C10.0382 (6)0.0349 (5)0.0283 (5)0.0088 (4)−0.0005 (4)−0.0098 (4)
O20.0285 (4)0.0329 (4)0.0275 (4)0.0003 (3)0.0059 (3)−0.0082 (3)
N20.0230 (4)0.0383 (5)0.0318 (5)−0.0004 (3)0.0027 (3)−0.0059 (4)
C20.0367 (6)0.0331 (5)0.0335 (5)0.0105 (4)0.0055 (5)−0.0073 (4)
C30.0270 (5)0.0353 (5)0.0388 (6)0.0064 (4)0.0036 (4)−0.0084 (4)
C40.0257 (5)0.0314 (5)0.0305 (5)0.0039 (4)0.0020 (4)−0.0075 (4)
C50.0258 (4)0.0203 (4)0.0207 (4)0.0025 (3)0.0028 (3)0.0007 (3)
C60.0225 (4)0.0212 (4)0.0195 (4)0.0012 (3)0.0029 (3)0.0017 (3)
C70.0216 (4)0.0240 (4)0.0197 (4)0.0003 (3)0.0022 (3)0.0010 (3)
C80.0320 (6)0.0513 (7)0.0267 (5)0.0050 (5)−0.0027 (4)−0.0137 (5)
C90.0323 (5)0.0360 (5)0.0343 (6)−0.0025 (4)0.0032 (4)−0.0125 (4)
C100.0247 (4)0.0224 (4)0.0203 (4)0.0011 (3)0.0047 (3)0.0009 (3)
C110.0224 (4)0.0222 (4)0.0229 (4)0.0014 (3)0.0051 (3)0.0030 (3)
C120.0228 (4)0.0237 (4)0.0263 (4)−0.0003 (3)0.0058 (3)0.0024 (3)
C130.0273 (5)0.0318 (5)0.0287 (5)0.0001 (4)0.0074 (4)−0.0011 (4)
C140.0281 (5)0.0376 (6)0.0385 (6)0.0003 (4)0.0117 (4)−0.0067 (4)
C150.0220 (5)0.0447 (6)0.0500 (7)0.0011 (4)0.0051 (5)−0.0107 (5)
C160.0235 (5)0.0471 (7)0.0406 (6)−0.0005 (4)−0.0004 (4)−0.0091 (5)

Geometric parameters (Å, °)

S1—C61.7303 (10)C5—C61.4626 (13)
S1—C111.7340 (10)C6—C71.3767 (13)
O1—C71.3644 (12)C7—C101.4229 (13)
O1—C81.4444 (13)C8—C91.5042 (18)
N1—C11.3412 (14)C8—H8B0.982 (17)
N1—C51.3533 (13)C8—H8A0.971 (18)
C1—C21.3828 (18)C9—H9B0.991 (16)
C1—H10.996 (18)C9—H9A0.984 (16)
O2—C101.3674 (12)C10—C111.3747 (14)
O2—C91.4463 (14)C11—C121.4609 (13)
N2—C161.3408 (15)C12—C131.4029 (14)
N2—C121.3435 (14)C13—C141.3841 (16)
C2—C31.3857 (17)C13—H130.950 (18)
C2—H20.965 (16)C14—C151.3814 (19)
C3—C41.3867 (15)C14—H140.948 (18)
C3—H30.938 (17)C15—C161.3868 (18)
C4—C51.3950 (15)C15—H150.992 (18)
C4—H40.994 (17)C16—H161.010 (18)
C6—S1—C1192.56 (5)C9—C8—H8A106.7 (10)
C7—O1—C8112.47 (8)H8B—C8—H8A112.5 (15)
C1—N1—C5117.10 (10)O2—C9—C8110.69 (10)
N1—C1—C2124.42 (11)O2—C9—H9B105.4 (10)
N1—C1—H1116.0 (9)C8—C9—H9B112.5 (10)
C2—C1—H1119.5 (9)O2—C9—H9A106.0 (10)
C10—O2—C9111.87 (8)C8—C9—H9A111.7 (9)
C16—N2—C12117.70 (10)H9B—C9—H9A110.1 (13)
C1—C2—C3117.94 (10)O2—C10—C11124.44 (9)
C1—C2—H2119.8 (10)O2—C10—C7122.58 (9)
C3—C2—H2122.3 (10)C11—C10—C7112.98 (8)
C2—C3—C4119.15 (11)C10—C11—C12128.97 (9)
C2—C3—H3121.6 (10)C10—C11—S1110.66 (7)
C4—C3—H3119.3 (10)C12—C11—S1120.30 (7)
C3—C4—C5119.10 (10)N2—C12—C13122.44 (10)
C3—C4—H4118.4 (10)N2—C12—C11115.59 (9)
C5—C4—H4122.5 (10)C13—C12—C11121.96 (9)
N1—C5—C4122.27 (9)C14—C13—C12118.59 (11)
N1—C5—C6115.39 (9)C14—C13—H13120.2 (10)
C4—C5—C6122.32 (9)C12—C13—H13121.2 (10)
C7—C6—C5129.33 (9)C15—C14—C13119.24 (11)
C7—C6—S1110.53 (7)C15—C14—H14120.1 (12)
C5—C6—S1120.07 (7)C13—C14—H14120.6 (12)
O1—C7—C6124.20 (9)C14—C15—C16118.50 (11)
O1—C7—C10122.50 (8)C14—C15—H15121.7 (10)
C6—C7—C10113.28 (9)C16—C15—H15119.7 (10)
O1—C8—C9110.71 (10)N2—C16—C15123.48 (12)
O1—C8—H8B108.2 (10)N2—C16—H16116.1 (10)
C9—C8—H8B110.2 (10)C15—C16—H16120.3 (10)
O1—C8—H8A108.5 (10)
C5—N1—C1—C20.93 (18)C9—O2—C10—C7−17.88 (13)
N1—C1—C2—C3−1.7 (2)O1—C7—C10—O21.80 (14)
C1—C2—C3—C40.77 (19)C6—C7—C10—O2179.87 (8)
C2—C3—C4—C50.74 (18)O1—C7—C10—C11−177.64 (9)
C1—N1—C5—C40.72 (15)C6—C7—C10—C110.44 (12)
C1—N1—C5—C6−177.85 (9)O2—C10—C11—C12−3.24 (16)
C3—C4—C5—N1−1.55 (16)C7—C10—C11—C12176.18 (9)
C3—C4—C5—C6176.92 (10)O2—C10—C11—S1179.96 (7)
N1—C5—C6—C7175.73 (10)C7—C10—C11—S1−0.62 (10)
C4—C5—C6—C7−2.84 (16)C6—S1—C11—C100.51 (7)
N1—C5—C6—S1−0.78 (12)C6—S1—C11—C12−176.61 (8)
C4—C5—C6—S1−179.35 (8)C16—N2—C12—C13−2.13 (16)
C11—S1—C6—C7−0.26 (7)C16—N2—C12—C11176.57 (10)
C11—S1—C6—C5176.86 (8)C10—C11—C12—N2−157.14 (10)
C8—O1—C7—C6165.76 (10)S1—C11—C12—N219.39 (12)
C8—O1—C7—C10−16.38 (14)C10—C11—C12—C1321.56 (15)
C5—C6—C7—O11.22 (16)S1—C11—C12—C13−161.91 (8)
S1—C6—C7—O1177.99 (8)N2—C12—C13—C140.69 (16)
C5—C6—C7—C10−176.82 (9)C11—C12—C13—C14−177.93 (10)
S1—C6—C7—C10−0.04 (10)C12—C13—C14—C151.45 (17)
C7—O1—C8—C945.42 (14)C13—C14—C15—C16−2.0 (2)
C10—O2—C9—C846.89 (13)C12—N2—C16—C151.51 (19)
O1—C8—C9—O2−62.83 (14)C14—C15—C16—N20.6 (2)
C9—O2—C10—C11161.49 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2589).

References

  • Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ghosh, R. & Simonsen, S. H. (1993). Acta Cryst. C49, 1031–1032.
  • Han, B.-H. & Choi, M.-G. (2000). Acta Cryst. C56, 1001–1003. [PubMed]
  • Lomas, J. S., Cordier, C., Adenier, A., Maurel, F. & Vaissermann, J. (2007). J. Phys. Org. Chem.20, 410–421.
  • Roncali, J., Blanchard, P. & Frère, P. (2005). J. Mater. Chem.15, 1589–1610.
  • Sato, M., Kubota, Y., Tanemura, A., Maruyama, G., Fujihara, T., Nakayama, J., Takayanagi, T., Takahashi, K. & Unoura, K. (2006). Eur. J. Inorg. Chem. pp. 4577–4588.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sotzing, G. A., Reynolds, J. R. & Steel, P. J. (1996). Chem. Mater.8, 882–889.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography