PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 February 1; 64(Pt 2): o380.
Published online 2008 January 9. doi:  10.1107/S1600536807068419
PMCID: PMC2960394

N-(2,6-Dimethyl­phen­yl)-2-methyl­acetamide

Abstract

The structure of the title compound (26DMPMA), C11H15NO, is closely related to the side-chain unsubstituted N-(2,6-dimethyl­phen­yl)acetamide and side-chain substituted N-(2,6-dimethyl­phen­yl)-2,2,2-trimethyl­acetamide and 2-chloro-N-(2,6-dimethyl­phen­yl)acetamide, with slightly different bond parameters. The mol­ecules in 26DMPMA are linked into chains through N—H(...)O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2004 [triangle], 2008 [triangle]); Gowda, Foro & Fuess (2007 [triangle]); Gowda, Svoboda & Fuess (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o380-scheme1.jpg

Experimental

Crystal data

  • C11H15NO
  • M r = 177.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o380-efi1.jpg
  • a = 4.7915 (7) Å
  • b = 11.593 (2) Å
  • c = 17.966 (3) Å
  • β = 96.11 (2)°
  • V = 992.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 (2) K
  • 0.50 × 0.14 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle])T min = 0.951, T max = 0.989
  • 7811 measured reflections
  • 2005 independent reflections
  • 1262 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.080
  • S = 0.95
  • 2005 reflections
  • 164 parameters
  • Only H-atom coordinates refined
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068419/dn2305sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068419/dn2305Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 2-methyl-N-(2,6-dimethylphenyl)- acetamide (26DMPMA) (Fig. 1) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of biologically significant compounds such as acetanilides (Gowda, Foro & Fuess, 2007); Gowda, Svoboda & Fuess, 2007); Gowda et al., 2008). The structure of 26DMPMA is closely related to the side chain unsubstituted N-(2,6-dimethylphenyl)-acetamide (26DMPA) (Gowda, Foro & Fuess, 2007) and side chain substituted, 2,2,2-trimethyl-N-(2,6-dimethylphenyl)-acetamide (26DMPTMA) (Gowda, Svoboda & Fuess, 2007) and 2-chloro-N-(2,6-dimethylphenyl)- cetamide (26DMPCA) (Gowda et al., 2008). The bond parameters in 26DMPMA are similar to those in 26DMPA, 26DMPTMA, 26DMPCA and other acetanilides (Gowda, Foro & Fuess, 2007; Gowda, Svoboda & Fuess, 2007; Gowda et al., 2008). The molecules in 26DMPMA are linked into infinite chains through N—H···O hydrogen bonding (Table 1 and Fig.2).

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2004). The purity of the compound was checked by determining its melting point. The compound was further characterized by recording its infrared and NMR spectra (Gowda et al., 2004). Single crystals of the title compound were obtained from a slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms were located in difference map, and their positional parameters were refined freely with N—H = 0.89 (1) %A and C—H = 0.96 (1)–1.02 (2) Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view showing the formation of a chain. Hydrogen bonds are represented as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.

Crystal data

C11H15NOF000 = 384
Mr = 177.24Dx = 1.186 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1603 reflections
a = 4.7915 (7) Åθ = 2.1–24.9º
b = 11.593 (2) ŵ = 0.08 mm1
c = 17.966 (3) ÅT = 100 (2) K
β = 96.11 (2)ºNeedle, colourless
V = 992.3 (3) Å30.50 × 0.14 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector2005 independent reflections
Radiation source: fine-focus sealed tube1262 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.036
T = 100(2) Kθmax = 26.4º
Rotation method data acquisition using ω and [var phi] scansθmin = 2.9º
Absorption correction: multi-scan[CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm]h = −5→5
Tmin = 0.951, Tmax = 0.989k = −13→14
7811 measured reflectionsl = −22→21

Refinement

Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.033  w = 1/[σ2(Fo2) + (0.043P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 0.95Δρmax = 0.17 e Å3
2005 reflectionsΔρmin = −0.16 e Å3
164 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.65780 (18)0.08126 (8)0.39277 (5)0.0262 (3)
N10.2247 (2)0.15987 (9)0.36988 (6)0.0189 (3)
H1N0.044 (3)0.1485 (11)0.3751 (7)0.023*
C10.3212 (2)0.27503 (11)0.36006 (6)0.0176 (3)
C20.2508 (3)0.36018 (11)0.41017 (7)0.0190 (3)
C30.3532 (3)0.47138 (12)0.40192 (7)0.0227 (3)
H30.310 (3)0.5309 (11)0.4368 (7)0.027*
C40.5195 (3)0.49761 (13)0.34589 (7)0.0240 (3)
H40.592 (3)0.5742 (12)0.3436 (7)0.029*
C50.5822 (3)0.41284 (12)0.29609 (7)0.0230 (3)
H50.699 (3)0.4338 (10)0.2572 (7)0.028*
C60.4831 (3)0.30035 (11)0.30172 (7)0.0196 (3)
C70.4008 (3)0.07132 (11)0.38927 (7)0.0191 (3)
C80.2643 (3)−0.04089 (12)0.40805 (8)0.0226 (3)
H8A0.233 (3)−0.0348 (11)0.4619 (8)0.027*
H8B0.078 (3)−0.0457 (11)0.3814 (7)0.027*
C90.4399 (3)−0.14537 (14)0.39496 (10)0.0340 (4)
H9A0.633 (4)−0.1371 (13)0.4197 (8)0.051*
H9B0.362 (3)−0.2172 (13)0.4137 (8)0.051*
H9C0.457 (3)−0.1568 (12)0.3394 (9)0.051*
C100.0701 (3)0.33281 (14)0.47103 (8)0.0247 (4)
H10A−0.132 (3)0.3315 (11)0.4530 (8)0.037*
H10B0.109 (3)0.2566 (14)0.4935 (7)0.037*
H10C0.096 (3)0.3906 (12)0.5110 (8)0.037*
C110.5511 (3)0.21070 (14)0.24562 (8)0.0257 (4)
H11A0.408 (3)0.1505 (12)0.2393 (7)0.039*
H11B0.586 (3)0.2484 (12)0.1971 (8)0.039*
H11C0.726 (3)0.1670 (11)0.2640 (7)0.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0137 (5)0.0268 (6)0.0384 (6)0.0012 (4)0.0041 (4)0.0058 (4)
N10.0109 (6)0.0207 (7)0.0258 (6)−0.0004 (5)0.0047 (5)0.0015 (5)
C10.0123 (7)0.0189 (8)0.0213 (7)0.0010 (6)−0.0006 (5)0.0026 (6)
C20.0144 (7)0.0225 (8)0.0200 (7)0.0055 (6)0.0009 (5)0.0025 (6)
C30.0219 (7)0.0218 (9)0.0243 (7)0.0049 (7)0.0022 (6)−0.0031 (6)
C40.0232 (8)0.0203 (8)0.0285 (8)−0.0022 (7)0.0024 (7)0.0029 (7)
C50.0211 (7)0.0272 (9)0.0214 (7)−0.0004 (7)0.0048 (6)0.0040 (6)
C60.0154 (7)0.0230 (8)0.0199 (7)0.0016 (6)−0.0001 (6)0.0006 (6)
C70.0163 (7)0.0220 (8)0.0193 (7)0.0017 (6)0.0030 (5)−0.0013 (6)
C80.0174 (7)0.0227 (8)0.0281 (8)−0.0003 (7)0.0051 (6)0.0015 (6)
C90.0236 (8)0.0234 (9)0.0556 (11)0.0020 (7)0.0068 (8)0.0068 (8)
C100.0226 (8)0.0282 (9)0.0243 (8)0.0021 (7)0.0072 (6)−0.0002 (6)
C110.0270 (8)0.0284 (9)0.0224 (7)−0.0009 (7)0.0065 (6)−0.0030 (6)

Geometric parameters (Å, °)

O1—C71.2317 (15)C6—C111.5073 (18)
N1—C71.3509 (16)C7—C81.5101 (18)
N1—C11.4299 (16)C8—C91.508 (2)
N1—H1N0.889 (14)C8—H8A0.998 (14)
C1—C61.4000 (17)C8—H8B0.968 (13)
C1—C21.4012 (17)C9—H9A0.988 (16)
C2—C31.3928 (18)C9—H9B0.987 (15)
C2—C101.4994 (19)C9—H9C1.020 (17)
C3—C41.3828 (18)C10—H10A0.986 (15)
C3—H30.969 (13)C10—H10B0.982 (15)
C4—C51.3834 (19)C10—H10C0.981 (14)
C4—H40.957 (13)C11—H11A0.978 (15)
C5—C61.3952 (18)C11—H11B1.005 (14)
C5—H50.973 (13)C11—H11C1.003 (15)
C7—N1—C1122.69 (11)C9—C8—C7113.27 (12)
C7—N1—H1N116.6 (8)C9—C8—H8A110.7 (7)
C1—N1—H1N118.8 (8)C7—C8—H8A105.7 (7)
C6—C1—C2121.59 (12)C9—C8—H8B112.1 (8)
C6—C1—N1120.03 (11)C7—C8—H8B109.7 (8)
C2—C1—N1118.38 (11)H8A—C8—H8B104.9 (11)
C3—C2—C1118.17 (12)C8—C9—H9A111.4 (9)
C3—C2—C10120.71 (12)C8—C9—H9B112.7 (9)
C1—C2—C10121.11 (12)H9A—C9—H9B107.5 (12)
C4—C3—C2121.19 (13)C8—C9—H9C111.2 (8)
C4—C3—H3119.6 (8)H9A—C9—H9C106.5 (13)
C2—C3—H3119.2 (8)H9B—C9—H9C107.3 (12)
C3—C4—C5119.76 (13)C2—C10—H10A112.7 (8)
C3—C4—H4118.4 (8)C2—C10—H10B113.0 (8)
C5—C4—H4121.8 (8)H10A—C10—H10B105.1 (12)
C4—C5—C6121.20 (13)C2—C10—H10C110.5 (8)
C4—C5—H5118.0 (7)H10A—C10—H10C107.2 (12)
C6—C5—H5120.8 (7)H10B—C10—H10C108.0 (11)
C5—C6—C1118.05 (12)C6—C11—H11A111.7 (9)
C5—C6—C11119.78 (12)C6—C11—H11B110.3 (8)
C1—C6—C11122.17 (12)H11A—C11—H11B112.9 (11)
O1—C7—N1122.39 (13)C6—C11—H11C111.1 (8)
O1—C7—C8121.57 (12)H11A—C11—H11C103.2 (11)
N1—C7—C8116.02 (11)H11B—C11—H11C107.3 (11)
C7—N1—C1—C665.81 (15)C4—C5—C6—C1−0.93 (19)
C7—N1—C1—C2−113.86 (13)C4—C5—C6—C11178.87 (12)
C6—C1—C2—C3−1.77 (18)C2—C1—C6—C52.20 (17)
N1—C1—C2—C3177.88 (11)N1—C1—C6—C5−177.45 (11)
C6—C1—C2—C10178.15 (12)C2—C1—C6—C11−177.59 (12)
N1—C1—C2—C10−2.20 (17)N1—C1—C6—C112.75 (17)
C1—C2—C3—C40.06 (18)C1—N1—C7—O1−7.20 (19)
C10—C2—C3—C4−179.86 (12)C1—N1—C7—C8171.64 (11)
C2—C3—C4—C51.17 (19)O1—C7—C8—C9−27.34 (19)
C3—C4—C5—C6−0.7 (2)N1—C7—C8—C9153.81 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.889 (14)2.065 (14)2.9352 (15)165.9 (12)

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2305).

References

  • Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3154.
  • Gowda, B. T., Foro, S., Svoboda, I., Paulus, H. & Fuess, H. (2008). Acta Cryst. E64, o286. [PMC free article] [PubMed]
  • Gowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3324.
  • Gowda, B. T., Usha, K. M. & Jyothi, K. (2004). Z. Naturforsch. Teil A, 59, 69–76.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Versions 1.171.32.5. Oxford Diffraction Ltd, Köln, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography